DOI QR코드

DOI QR Code

Influence of Organic Carbon Sources on Growth and Lipid Content of Marine Green Alga Dunaliella tertiolecta

  • Rizwan, Muhammad (Department of Environmental Engineering and Energy, Myongji University) ;
  • Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2014.12.19
  • Accepted : 2014.12.29
  • Published : 2014.12.31

Abstract

This study investigated the potential use of various organic carbon sources (glucose, glycerol and acetate) and different concentrations of $CO_2$ for culturing marine microalga Dunaliella tertiolecta. Cell growth and lipid production were monitored under heterotrophic, mixotrophic and photoautotrophic modes of cultivation. D. tertiolecta showed the ability to grow under mixotrophic (acetate and glucose), heterotrophic (glucose) and photoautotrophic condition under high $CO_2$ concentration (15%). With all the organic carbon sources (glucose, glycerol and acetate) tested in this study, 1~5% acetate enhanced cell growth rate and lipid content, while higher concentrations of acetate (10% and 15%) were inhibitory and resulted in cell death.

Keywords

References

  1. APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA, Washington, DC.
  2. Arroussi, H. El, R. Benhima, I. Bennis, N. El Mernissi, and I. Wahby. 2015. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy 77, 15-19. https://doi.org/10.1016/j.renene.2014.12.010
  3. Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/o59-099
  4. Bouarab, L., A. Dautab, and M. Loudiki. 2004. Heterotrophic and mixotrophic growth of Micractinium pusillum fresenius in the presence of acetate and glucose: Effect of light and acetate gradient concentration. Water Res. 38, 2706-2712. https://doi.org/10.1016/j.watres.2004.03.021
  5. Chen, F. and M. Johns. 1991. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3, 203-209. https://doi.org/10.1007/BF00003578
  6. Chen, F. and M. Johns. 1995. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. J. Appl. Phycol. 7, 43-46. https://doi.org/10.1007/BF00003548
  7. Chen, M., H. Tang, H. Ma, T.C. Holland, K.Y. Simon Ng, and S.O. Salley. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102, 1649-1655. https://doi.org/10.1016/j.biortech.2010.09.062
  8. Chen, Y.H. and T.H. Walker. 2011. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol. Lett. 33, 1973-1983. https://doi.org/10.1007/s10529-011-0672-y
  9. Chi, Z.P., D. Pyle, Z. Wen, C. Frear, and S. Chen. 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42, 1537-1545. https://doi.org/10.1016/j.procbio.2007.08.008
  10. Degrenne, B., J. Pruvost, G. Christophe, J. Cornet, G. Cogne, and J. Legrand. 2010. Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 35 (19), 10741-10749. https://doi.org/10.1016/j.ijhydene.2010.02.067
  11. Guillard. R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals, W.L. Smith and M.H. Chanley (eds.), Plenum, NY, pp. 29-60.
  12. Gustavo, B. L., A.E.M. Abdelaziz, and P.C. Hallenbeck. 2013. Algal biofuels: Challenges and opportunities. Bioresour. Technol. 145, 134-141. https://doi.org/10.1016/j.biortech.2013.02.007
  13. Hagen, C., K. Grunewald, M. Xylander, and E. Rothe. 2001. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol. 13 (1), 79-87. https://doi.org/10.1023/A:1008105909044
  14. Haiying, T., N. Abunasser, M.E.D. Garcia, M. Chen, K.Y. Simon Ng, and S.O. Salley. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88, 3324-3330. https://doi.org/10.1016/j.apenergy.2010.09.013
  15. Heredia, A.T., W. Wei, and B. Hu. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162 ,1978-1995. https://doi.org/10.1007/s12010-010-8974-4
  16. Heredia, A.T., W. Wei, R. Ruan, and B. Hu. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 5, 2-10.
  17. Jeon, Y., C. Cho, and Y. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enz. Microb. Technol. 39, 490-495. https://doi.org/10.1016/j.enzmictec.2005.12.021
  18. Jun, I.H., I. Ohba, K. Tada, M. Kobayashi, T. Kanno, and M. Kishimoto. 2003. Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH control. J. Biosci. Bioeng. 95, 412-415. https://doi.org/10.1016/S1389-1723(03)80078-6
  19. Katarzyna, C. and N. Andrzej. 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme. Microb. Technol. 34, 461-465 https://doi.org/10.1016/j.enzmictec.2003.12.002
  20. Li, X., H. Xu, and Q. Wu. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98, 764-771. https://doi.org/10.1002/bit.21489
  21. Liang, Y.N., N. Sarkany, and Y. Cui. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  22. Mandal, S. and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291. https://doi.org/10.1007/s00253-009-1935-6
  23. Kim, G., G. Mujtaba, M. Rizwan, and K. Lee. 2014. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl. Chem. Eng. 25, 553-558. https://doi.org/10.14478/ace.2014.1125
  24. Narayan, M.S., G.P. Manoj, K. Vatchravelu, N. Bhagyalakshmi, and M. Mahadevaswamy. 2005. Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int. J. Food. Sci. Nutr. 56, 521-528. https://doi.org/10.1080/09637480500410085
  25. Ogbonna, J.C., E. Ichige, H. Tanaka. 2002. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl. Microbiol. Biotechnol. 58, 532-538. https://doi.org/10.1007/s00253-001-0901-8
  26. Perez-Garcia, O., F.M.E. Escalante, L.E. de-Bashan, and Y. Bashan. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res. 45, 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  27. Pyle, D.J., R.A. Garcia, Z.Y. Wen. 2008. Producing docosahexaenoic acid (DHA)-rich algae from biodieselderived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food. Chem. 56, 3933-3939. https://doi.org/10.1021/jf800602s
  28. Quiao, H. and G. Wang. 2009. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J. Oceanol. Limnol., 27, 762-768. https://doi.org/10.1007/s00343-009-9216-x
  29. Rashmi. C., M.V. Rohit, Y.V. Swamy, and S. V. Moha. 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour. Technol. 165, 279-287. https://doi.org/10.1016/j.biortech.2014.02.102
  30. Santiago, D., H.F. Jin, and K. Lee. 2010. The influence of ferrous-complexed EDTA as a solubilization and its auto-regeneration on the removal of nitric oxide gas through the culture of microalga Scenedesmus sp. Process Biochem. 45, 1949-1953. https://doi.org/10.1016/j.procbio.2010.04.003
  31. Schenk, P., S. Thomas, E. Stephens, U. Marx, J. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  32. Suzuki, T., T. Matsuo, K. Ohtaguchi, and K. Koide. 1995. Gas-sparged bioreactors for $CO_2$ fixation by Dunaliella tertiolecta. J. Chem. Technol. Biotechnol. 62, 351-358. https://doi.org/10.1002/jctb.280620407
  33. Takagi, M. and Y.T Karseno. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci. Bioeng. 101, 223-226. https://doi.org/10.1263/jbb.101.223
  34. Thompson, J.C. and B. He, 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 22, 261-265. https://doi.org/10.13031/2013.20272
  35. Wei, A.L., X.W. Zhang, D. Wei, G. Chen, Q.Y. Wu, and S.T. Yang. 2009. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol. 6, 1383-1389.
  36. Xiaoling, M. and Q. Wu. 2006. Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol. 97, 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  37. Yamane, Y., T. Utsunomiya, M. Watanabe, K. Sasaki. 2011. Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol. Lett. 23, 1223-1228.
  38. Yanna, L., N. Sarkany, Y.Cui, J.W. Blackburn. 2010. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 101, 6745-6750. https://doi.org/10.1016/j.biortech.2010.03.087
  39. Zhang, W., P. Zhang, H. Sun, M. Chen, S. Lu, and P. Li. 2014. Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa, Bioresour. Technol. 174, 52-58.

Cited by

  1. Microalgae mixotrophic cultivation for β-galactosidase production pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1720-y