Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.8.26

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance  

Han, Narae (Department of Biology Education, Chonnam National University and Khumho Research Institute)
Wi, Jiwoong (Department of Biology Education, Chonnam National University and Khumho Research Institute)
Im, Sungoh (Department of Biology Education, Chonnam National University and Khumho Research Institute)
Lim, Ka-Min (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Hun-Dong (Department of Biology, Chonnam National University)
Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Geun-Joong (Department of Biology, Chonnam National University)
Kim, Chan Song (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science)
Park, Eun-Jeong (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science)
Hwang, Mi Sook (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science)
Choi, Dong-Woog (Department of Biology Education, Chonnam National University and Khumho Research Institute)
Publication Information
ALGAE / v.36, no.3, 2021 , pp. 207-217 More about this Journal
Abstract
An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.
Keywords
heat stress tolerance; PyHRG1; Pyropia yezoensis; red algae; transcriptome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shin, Y. J., Min, S. R., Kang, D. Y., Lim, J. -M., Park, E. -J., Hwang, M. S., Choi, D. -W., Ahn, J. -W., Park, Y. -I. & Jeong, W. -J. 2018. Characterization of high temperature-tolerant strains of Pyropia yezoensis. Plant Biotechnol. Rep. 12:365-373.   DOI
2 Avila, M., Santelices, B. & McLachlan, J. 1986. Photoperiod and temperature regulation of the life history of Porphyra columbina (Rhodophyta, Bangilaes) from central Chile. Can. J. Bot. 64:1867-1872.   DOI
3 Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37.   DOI
4 Rienth, M., Torregrosa, L., Luchaire, N., Chatbanyong, R., Lecourieux, D., Kelly, M. T. & Romieu, C. 2013. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol. 14:108.   DOI
5 Chan, C. X., Blouin, N. A., Zhuang, Y., Zauner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Muller, K., Stiller, J. W., Brawley, S. H. & Bhattacharya, D. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J. Phycol. 48:1328-1342.   DOI
6 Chen, P., Jung, N. U., Giarola, V. & Bartels, D. 2020. The dynamic responses of cell walls in resurrection plants during dehydration and rehydration. Front. Plant Sci. 10:1698.   DOI
7 Chen, S. & Li, H. 2017. Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels, revealed by RNA-seq in Brachypodium distachyon. Front. Plant Sci. 7:2067.
8 Choi, S., Hwang, M. S., Im, S., Kim, N., Jeong, W. -J., Park, E.-J., Gong, Y. -G. & Choi, D. -W. 2013. Transcriptome sequencing and comparative analysis of the gametophyte of Pyropia tenera under normal and high-temperature condition. J. Appl. Phycol. 25:1237-1246.   DOI
9 Na, Y., Lee, H. -N., Wi, J., Jeong, W. -J. & Choi, D. -W. 2018. PtDRG1, a desiccation response gene from Pyropia tenera (Rhodophyta), exhibits chaperone function and enhances abiotic stress tolerance. Mar. Biotechnol. 20:584-593.   DOI
10 Popper, Z. A., Ralet, M. -C. & Domozych, D. S. 2014. Plant and algal cell walls: diversity and functionality. Ann. Bot. 114:1043-1048.   DOI
11 Rodriguez, M. C. S., Edsgard, D., Hussain, S. S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B. H., Bartels, D. & Mundy, J. 2010. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63:212-228.   DOI
12 Sasidharan, R., Voesenek, L. A. C. J. & Pierik, R. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30:548-562.   DOI
13 Song, J., Liu, Q., Hu, B. & Wu, W. 2016. Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul. 79:209-218.   DOI
14 Wang, K., Liu, Y., Tian, J., Huang, K., Shi, T., Dai, X. & Zhang, W. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNAsequencing. Front. Plant Sci. 8:1032.   DOI
15 Im, S., Choi, S., Hwang, M. S., Park, E. -J., Jeong, W. -J. & Choi, D. -W. 2015. De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J. Appl. Phycol. 27:1343-1353.   DOI
16 Shinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E. A., Bailey-Serres, J. & Weretilnyk, E. 2015. Responses to abiotic stresses. In Buchanan, B., Gruissem, W. & Jones, R. (Eds.) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologist, Rockville, MD, pp. 1051-1100.
17 Im, S., Lee, H. -N., Jung, H. S., Yang, S., Park, E. -J., Hwang, M. S., Jeong, W. -J. & Choi, D. -W. 2017. Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar. Biotechnol. 19:232-245.   DOI
18 Van den Ende, W. & Valluru, R. 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60:9-18.   DOI
19 Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905.   DOI
20 Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-233.   DOI
21 Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci. 9:244-252.   DOI
22 Wu, H. -C., Bulgakov, V. P. & Jinn, T. -L. 2018. Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Front. Plant Sci. 9:1612.   DOI
23 Lu, Y. & Xu, J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20:273-282.   DOI
24 Kim, M., Wi, J., Lee, J., Cho, W. -B., Park, E. -J., Hwang, M. -S., Choi, S. -J., Jeong, W. -J., Kim, G. H. & Choi, D. -W. 2021. Development of genomic simple sequence repeat (SSR) markers of Pyropia yezoensis (Bangiales, Rhodophyta) and evaluation of genetic diversity of Korean cultivars. J. Appl. Phycol. Advanced online publication. https://doi.org/10.1007/s10811-021-05236-7.   DOI
25 Le Gall, H., Philippe, F., Domon, J. -M., Gillet, F., Pelloux, J. & Rayon, C. 2015. Call wall metabolism in response to abiotic stress. Plants 4:112-166.   DOI
26 Livingston, D. P., Hincha, D. K. & Heyer, A. G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66:2007-2023.   DOI
27 Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H. & Yan, X. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE 9:e94354.   DOI
28 Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.   DOI
29 Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498.   DOI
30 Moore, J. P., Vicre-Gibouin, M., Farrant, J. M. & Driouich, A. 2008. Adaptations of higher plant cell walls to water loss: drought vs. desiccation. Physiol. Plant. 134:237-245.   DOI
31 McLachlan, J. 1973. Growth media-marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 25-51.
32 Eklof, J. M. & Brumer, H. 2010. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 153:456-466.   DOI
33 Xu, Y. & Hwang, B. 2018. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 19:70.   DOI
34 Yang, K. A., Lim, C. J., Hong, J. K., Park, C. Y., Cheong, Y. H., Chung, W. S., Lee, K. O., Lee, S. Y., Cho, M. J. & Lim, C. O. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182.   DOI
35 Senechal, F., Wattier, C., Rusterucci, C. & Pelloux, J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65:5125-5160.   DOI
36 Choi, J. Y., Seo, Y. S., Kim, S. J., Kim, W. T. & Shin, J. S. 2011. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep. 30:867-877.   DOI
37 Dai, Y. L., Kim, G. H., Kang, M. C. & Jeon, Y. J. 2020. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model. Algae 35:189-200.   DOI
38 Ha, Y. I., Lim, J. M., Ko, S. -M., Liu, J. R. & Choi, D. -W. 2007. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance. Gene 386:115-122.   DOI
39 Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121.   DOI
40 Hwang, M. -S., Chung, I. -K. & Oh, Y. -S. 1997. Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12:207-213.