• Title/Summary/Keyword: Marine Structures

Search Result 1,267, Processing Time 0.024 seconds

Air-borne Chloride Content of Highway Bridges Exposed to Marine Environment (해양환경에 위치한 국내 고속도로 교량의 비래염분량 측정 결과)

  • 정해문;유환구;류종현;안태송;김수만;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.743-748
    • /
    • 2002
  • Chloride ingress into concrete followed by reinforcement corrosion and deterioration of concrete structures is a major problem for many structures under chloride attacks. Large-scale concrete structures directly exposed to seawater such as SeoHae Grand Bridge are increasingly constructed along the coast in Korea. It is necessary to investigate the environmental conditions of concrete structures exposed to chloride attacks. In this study, the air-borne chloride contents of highway bridges exposed to marine environment in Korea were measured.

  • PDF

Wave Deformation by Large Cylindrical Structures (근접설치된 대형구조물에 의한 구조물주변의 파의 변형)

  • 김창제;김정렬
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • This study examines experimentally and theoretically, the wave deformation by two large cylindrical structure in relation to the case of one structure. The wave height around the structures varies, according to the changes of the incident wave angles, the number of the structure, and the distances between the two structures. The wave deformation around the large cylindrical structures is shown to be well predicted theoretically by the diffraction theory based on the singular point distribution method using a vertical line wave source Green's function.

  • PDF

Study on Behavior of Slender Bodies in Waves (세장체의 파랑중 거동에 대한 실험에 관한 고찰)

  • Lee, Seung Jae;Kang, Donghoon;Jo, Hyo Jae;Shin, Da Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.29-35
    • /
    • 2013
  • The exploration areas for maritime resources such as oil and natural gas have gradually moved to deep sea areas. It has become difficult to use existing fixed marine structures, which are very costly to build, because that have reached the uppermost economic limit. Therefore, floating marine structures and flexible marine structures are preferred. In particular, slender bodies such as risers and pipes are important parts of ocean depth marine structures. These slender bodies have more flexible structural characteristics in deep water areas because their overall length becomes longer and thediameter/length slenderness ratio gets smaller. In addition, the dynamic behavior of slender bodies becomes complicated as external forces such as tides and waves act on it directly. In this study, in order to solve these problems, we performed model tests in a 2-D wave basin using flexible slender bodies with different modulus of elasticity values. As a result, we compiled statistics and compared the behaviors of flexible slender bodies with respect to the effect of the modulus of elasticity. We expect that the results could be used as reference data for the design of structures with flexible elements.

Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures (장방형 부유구조물에 대한 동유체력-구조응답 특성)

  • Oh, Young-Cheol;Gim, Ok-Sok;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.577-583
    • /
    • 2012
  • Structures floating in the ocean experience various kinds of external loads, among which wave load is considered as determining factor in structural design. Its relative size compared with wavelength may be used to classify whether the structure is relatively small or large. Traditionally, the small structures are assumed to have little diffraction and the wave loads on large structure are usually calculated by only considering inertia force according to diffraction. In this paper, rectangular floating structures usually used in the ocean, river, and lake are used to find the relationship between hydrodynamic forces and its structural response.

Development of Durability Design for Railroad Concrete Structures Exposed to Marine Environment Considering Time Dependency (시간의존성을 고려한 해안가 철도 콘크리트 구조물에 대한 내구성 설계 기법의 개발)

  • Song, Ha-Won;Pack, Seung-Woo;Lee, Son-Ho;Kwen, Jin-Su;Lee, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1431-1438
    • /
    • 2007
  • This paper presents a refined design model for current railroad design code on concrete structures exposed to marine environment. A time-varying diffusion coefficient(D) as well as surface chloride$(C_S)$ and chloride threshold level$(C_{lim})$ are studied. Averaging value of the D with time over exposed duration were used to refined durability design model to consider time dependent characteristic of D. The values for $C_S$ and $C_{lim}$ for the seashore in Korea revised for realistic durability design. The proposed model was verified by the so-called performance-based durability design, which is widely used in recent durability design code. Results show that the current standard specification underestimates durability performances of concrete structures exposed to marine environment, so that the cover depth design using current durability evaluation in the standard specifications is very much conservative. Thus, it is found that proposed durability design models for the railroad design code for railway concrete structures can be used effectively for service life design of concrete structures in marine environment.

  • PDF

Application of aerospace structural models to marine engineering

  • Pagani, A.;Carrera, E.;Jamshed, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.219-235
    • /
    • 2017
  • The large container ships and fast patrol boats are complex marine structures. Therefore, their global mechanical behaviour has long been modeled mostly by refined beam theories. Important issues of cross section warping and bending-torsion coupling have been addressed by introducing special functions in these theories with inherent assumptions and thus compromising their robustness. The 3D solid Finite Element (FE) models, on the other hand, are accurate enough but pose high computational cost. In this work, different marine vessel structures have been analysed using the well-known Carrera Unified Formulation (CUF). According to CUF, the governing equations (and consequently the finite element arrays) are written in terms of fundamental nuclei that do not depend on the problem characteristics and the approximation order. Thus, refined models can be developed in an automatic manner. In the present work, a particular class of 1D CUF models that was initially devised for the analysis of aircraft structures has been employed for the analysis of marine structures. This class, which was called Component-Wise (CW), allows one to model complex 3D features, such as inclined hull walls, floors and girders in the form of components. Realistic ship geometries were used to demonstrate the efficacy of the CUF approach. With the same level of accuracy achieved, 1D CUF beam elements require far less number of Degrees of Freedom (DoFs) compared to a 3D solid FE solution.

A Study on the Application Criteria of Domestic Regulations for Floating Marine Structures (부유식해상구조물의 분류 및 국내법 적용 기준에 관한 고찰)

  • Pyun, Jang-Hoon;Ryu, Sung-Gon;Kim, In-Seob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.928-936
    • /
    • 2022
  • According to the current status of marine accidents in Korea, the number of accidents is steadily increasing by an approximate average of 8.5% per year, and marine accidents are steadily increasing for ships and structures such as floating barges, tugboats, ferries and floating platforms except for fishing ships. In this study, domestic floating structures were classified according to the type of floating structure, and the regulation system and the scope of the application of floating marine structures were schematically illustrated according to related domestic laws such as the Ship Safety Act, Ship Act and Fishing Management and Promotion Act. In addition, considering the state of the marine environment, it was intended to discover structurally delicate parts and risk factors early in blinded safety spots in applying domestic regulations, and to derive effective improvement measures for the discovered risk factors.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Investigation of Salt Attack of Concrete Structures Exposed to Reclaimed Marine Land (해안매립지에 위치한 콘크리트구조물의 염해조사)

  • Kim, Seong-Soo;Cheong, Ran;Kim, Young-Ung;Kim, Young-Chul;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.835-840
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus tire deteriorated concrete is subject to experience severe degrading of durability under marine environment. In this study, concrete structures exposed to reclaimed marine land wet-e investigate to find out the salt attack along with analysis and review of it's cause. Under the reclaimed marine land, the main causes of deterioration of concrete structures is the steel corrosion due to the Penetration of chlorides and the deterioration of outer concrete itself by chemical attack.

  • PDF

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.