• 제목/요약/키워드: Marine Streptomyces

검색결과 59건 처리시간 0.024초

Biosynthesis of Bile Acids in a Variety of Marine Bacterial Taxa

  • Kim, Doc-Kyu;Lee, Jong-Suk;Kim, Ji-Young;Kang, So-Jung;Yoon, Jung-Hoon;Kim, Won-Gon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.403-407
    • /
    • 2007
  • Several marine. bacterial strains, which were isolated from seawater off the island Dokdo, Korea, were screened to find new bioactive compounds such as antibiotics. Among them, Donghaeana dokdonensis strain DSW-6 was found to produce antibacterial agents, and the agents were then purified and analyzed by LC-MS/MS and 1D- and 2D-NMR spectrometries. The bioactive compounds were successfully identified as cholic acid and glycine-conjugated glycocholic acid, the $7{\alpha}$-dehydroxylated derivatives (deoxycholic acid and glycodeoxycholic acid) of which were also detected in relatively small amounts. Other marine isolates, taxonomically different from DSW-6, were also able to produce the compounds in a quite different production ratio from DSW-6. As far as we are aware of, these bile acids are produced by specific members of the genus Streptomyces and Myroides, and thought to be general secondary metabolites produced by a variety of bacterial taxa that are widely distributed in the sea.

넙치 배아세포에서 tacrolimus에 의한 DNA 손상, 세포사멸 및 염증성 반응에 대한 luthione의 억제 효과 (Inhibitory effect of luthione on tacrolimus-induced DNA damage, apoptosis and inflammatory response in olive flounder natural embryo cells)

  • 박상은;최영현
    • 한국해양바이오학회지
    • /
    • 제14권1호
    • /
    • pp.33-42
    • /
    • 2022
  • Tacrolimus, a type of macrolide produced by Streptomyces tsukubaensis, is widely used as an immunosuppressant. However, continuous exposure to tacrolimus causes oxidative stress in normal cells, ultimately inducing cell injury. Therefore, this study investigated whether luthione, a reduced glutathione, could inhibit tacrolimus-induced cytotoxicity in olive flounder (hirame) natural embryo (HINAE) cells. According to the results, luthione significantly inhibited tacrolimus-induced reduction in cell viability in a concentration-dependent manner. Additinally, although luthione unaffected autophagy by tacrolimus, tacrolimus-induced apoptosis was significantly suppressed in the presence of luthione. Luthione also markedly blocked DNA damage in tacrolimus-treated HINAE cells, associated with the inhibition of reactive oxygen species (ROS) generation. Additionally, tacrolimus cytotoxicity in HINAE cells was correlated with increased inflammatory response, also attenuated by luthione. Collectively, these results show that at least luthione protects HINAE cells against tacrolimus-induced DNA damage, apoptosis, and inflammation, but not autophagy, by scavenging ROS. Although additional in-vivo studies are required, this study's results can be used as a basis for utilizing luthione to reduce the toxicity of fish cells caused by excessive immune responses.

해양방선균으로부터 Haloperoxidase의 검색과 특성 (Screening and Partial Purification of Haloperoxidase from Marine Actinomycetes)

  • 조기웅
    • 미생물학회지
    • /
    • 제44권2호
    • /
    • pp.116-121
    • /
    • 2008
  • Haloperoxidase를 생산하는 미생물을 분리하기 위하여 국내 연근해와 남북극 등의 해양시료에서 분리된 방선균 균주를 대상으로 탐색을 수행하여 남해 백도 해조류 추출물로부터 분리된 한 종류의 방선균(#1460)에서 높은 haloperoxidase 활성이 확인되었다. 본 균주의 생리.생화학적 특성은 Streptomyces 속과 유사하며 생산되는 haloperoxidase는 세포 조 추출물로부터 ammonium sulfate precipitation, High-Q column chromatography, gel permeation chromatography, Hydroxyapetite chromatography 그리고 hydrophobic interaction chromatography를 통하여 42%의 수율과 purification fold 70으로 정제하였다. 본 효소의 최적 반응 pH는 7이고 pH 8에서 더 높은 안정성을 보여 $60^{\circ}C$에서 1시간 반응에 효소활성의 50%가 생존한다. 또 cyanide와 azide 이온에 의해 강한 저해현상을 보인다.

Bioactivity of Metabolites from Actinomycetes Isolates from Red Sea, Egypt

  • Osman, Mohamed E.;El-nasr, Amany A. Abo;Hussein, Hagar M;Hamed, Moaz M
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.255-269
    • /
    • 2022
  • Actinomycetes isolated from marine habitats represent a promising source of bioactive substances. Here, we report on the isolation, identification, productivity enhancement and application of the bioactive compounds of Streptomyces qinglanensis H4. Eighteen marine actinomycetes were isolated and tested for resistance to seven bacterial diseases. Using 16S rRNA sequencing analysis (GenBank accession number MW563772), the most powerful isolate was identified as S. qinglanensis. Although the strain produced active compound(s) against a number of Gram-negative and Gram-positive bacteria, it failed to inhibit pathogenic fungi. The obtained inhibition zones were 22.0 ± 1.5, 20.0 ± 1, 16.0 ± 1, 12.0 ± 1, 22.0 ± 1 and 24.0 ± 1 mm against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 19404, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231 and Staphylococcus aureus ATCC6538, respectively. To maximize bioactive compound synthesis, the Plackett-Burman design was used. The productivity increased up to 0.93-fold, when S. qinglanensis was grown in optimized medium composed of: (g/l) starch 30; KNO3 0.5; K2HPO4 0.25; MgSO4 0.25; FeSO4·7H2O, 0.01; sea water concentration (%) 100; pH 8.0, and an incubation period of 9 days. Moreover, the anticancer activity of S. qinglanensis was tested against two different cell lines: HepG2 and CACO. The inhibition activities were 42.96 and 57.14%, respectively. Our findings suggest that the marine S. qinglanensis strain, which grows well on tailored medium, might be a source of bioactive substances for healthcare companies.

방선균에 의해 생산된 항 MRSA 항생물질 AM3의 구조 연구 (Structure Elucidation of a Potent Anti-MRSA Antibiotic, AM3, Produced by Streptomyces sp.)

  • 임융호;장준환;김종훈;서정우;정재경;이철훈
    • Applied Biological Chemistry
    • /
    • 제38권6호
    • /
    • pp.516-521
    • /
    • 1995
  • 항 MRSA 물질을 찾기 위하여 찬국 해양 토양을 검색하였고, 거기서 분리된 방선균의 이차 대사물질 중 항 MRSA 효능을 보이는 물질을 AM3이라고 명명하고 이에 대한 연구를 하였다.

  • PDF

A report on 10 unrecorded bacterial species isolated from the Korean islands in 2022

  • Seung Yeol Shin;Myung Kyum Kim;Yochan Joung;Yi Hyun Jeon;Ji Hye Jeong;Hyun-Ju Noh;Jaeho Song;Heeyoung Kang
    • Journal of Species Research
    • /
    • 제12권spc2호
    • /
    • pp.54-59
    • /
    • 2023
  • To obtain unrecorded bacterial species from Korean islands, various samples were collected from the islands in 2022. After plating the samples on marine agar or Reasoner's 2A, and incubating aerobically, approximately 1,200 bacterial strains were isolated and identified using 16S rRNA gene sequences. A total of 10 strains showed ≥98.7% 16S rRNA gene sequence similarity with the bacterial species that were validly published but not reported in Korea. The unrecorded bacterial strains belong to three phyla, five classes, 10 orders, 10 families, and 10 genera, which are assigned to Sphingomonas, Falsirhodobacter and Asticcacaulis of the class Alphaproteobacteria; Colwellia and Halomonas of the class Gammaproteobacteria; Chitinophaga of the class Chitinophagia; Chryseobacterium of the class Flavobacteriia; Microlunatus, Zhihengliuella, and Streptomyces of the class Actinomycetia. The details of the unreported species including Gram reaction, colony and cell morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.

A report of 20 unrecorded bacterial species in Korea, isolated from soils of coastal areas in 2022

  • Seung Hyeok Soung;Jaeho Song;Seung Yeol Shin;Song-Ih Han
    • Journal of Species Research
    • /
    • 제12권4호
    • /
    • pp.267-276
    • /
    • 2023
  • To obtain unrecorded bacterial species in Korea, various soils of coastal areas were collected from the Republic of Korea in 2022. After plating the samples on marine agar and incubating aerobically and anaerobically, approximately 1,700 bacterial strains were isolated and identified using 16S rRNA gene sequences. A total of 20 strains showed ≥98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, indicating they are unrecorded bacterial species in Korea. The unrecorded bacterial strains belonged to four phyla, six classes, 15 orders, 16 families, and 19 genera which were assigned to Blastomonas and Sphingomonas of the class Alphaproteobacteria; Pseudidiomarina, Kushneria, Salinicola, and Salinisphaera of the class Gammaproteobacteria; Evansella, Virgibacillus, and Paenibacillus of the class Bacilli; Cyclobacterium of the class Cytophagia; Pedobacter of the class Sphingobacteriia; and Demequina, Ornithinimicrobium, Blastococcus, Jatrophihabitans, Kineococcus, Glaciihabitans, Aeromicrobium and Streptomyces of the class Actinomycetes. The details of the 20 unreported species, including Gram reaction, morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4

  • Meng, Xin;Shao, Zongze;Hong, Yuzhi;Lin, Ling;Li, Chanjuan;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1077-1084
    • /
    • 2009
  • A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.

16S rRNA 염기서열 분석을 통한 오분자기(Sulculus diversicolor supertexta)내 미생물 군집 조사 및 인체유해 질병세균에 대한 항균활성 모니터링 (Investigation of Microbial Communities in Sulculus diversicolor supertexta Through 16S rRNA Sequencing and Antibacterial Monitoring of Harmful Strains)

  • 김민선;이승종;허문수
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1477-1488
    • /
    • 2018
  • 본 연구는 제주 연안에서 채집한 오분자기(Sulculus diversicolor supertexta)를 구성하는 미생물 군집의 다양성을 알아보기 위하여 근육, 장, 생식소 각 부위별로 조사하였다. 배지로 1차 순수 분리한 결과 근육은 MA, 장 1% BHIA, 생식소 1% TSA에서 각각 최대 군락 계수가 나타났다. 16S rRNA sequence로 표준 균주와 비교 유사도 분석 결과 총 190개의 순수 colony가 분리되었다. NBLAST program 분석 결과 크게 5문 25과 39속 71종으로 나타났다. 표준 균주와 상동성은 91-100%를 나타냈다. 오분자기 내 미생물 군집은 크게 Probacteria (Gamma-proteobacteria, Alpha-proteobacteria) 48%, Actinobacteria 32.5%, Firmicutes 16.9%, Bacteroide 1.3%, Deinococcus-thermus 1.3%로 나타났다. 근육, 장, 생식소 모든 부위에서 Moraxellaceae과 Psychrobacter cibarius가 우점하였다. 근육, 장, 생식소 모든 부위에서 Alteromonadaceae, Enterobacteriaceae, Pasturellaceae, Moraxellaceae, Rhodobacteraceae, Geminicoccaceae, Dietziaceae, Intrasporangiaceae, Microbacteriaceae, Micrococcaceae, Micromonosporaceae, Streptomycetaceae, Aerococcaceae, Bacillaceae, Paenibacillaceae, Planococcaceae, Staphylcoccaceae가 공통적으로 분리되었으며, 장에서 Flavobacteriaceae, Corynebacteriaceae, Yesiniaceae, Vibrionaceae, Hahellaceae, Pseudomonadaceae가 추가 분리되었다. 분리 균주로부터 인체 유해 질병 세균에 대한 항균활성 모니터링 결과 Sterptomyces albus (96%)가 4균주 모두 항균활성을 보였고 Agrococcus baldri (99%), Psychrobacter nivimaris (99%)가 E. coli, E. aerogens에 대한 항균활성을 나타냈다. 그 외 상동성이 낮은 일부 균주가 분리되어 신균주 실험을 비롯한 항균활성물질 정제 등 추가 실험이 필요한 것으로 사료된다. 본 실험은 오분자기 미생물 군집의 다양성과 유전학적 자원을 확보하는데 의의를 두며, 응용 미생물의 개발 가능성에 있어 기초 자료를 제공하고자 하였다.