• Title/Summary/Keyword: Mariana Trench

Search Result 8, Processing Time 0.02 seconds

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Asymmetric Topography of Active Young Back-arc Basins and Tectonic Implications (활동적 배호상 해분의 비대칭적 지형과 그들의 구조적 해석)

  • Park, Chung-Hwa
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.637-644
    • /
    • 1997
  • Active young back-arc basin such as Mariana, Havre, Lau, Manus, East Scotia basins have asymmetric topography of two types in respect to the spreading axis. The arc-trench wing of Mariana Trough, Lau basin and Havre Trough are shallower toward the active arc, whereas those Manus and East Scotia basins are nearly symmetric to the opposite wings. The other asymmetry which shows the spreading axis deviated from the geographic axis toward the active arc is observed in each basin. Active young back-arc basins show a large variety of asymmetry rates ranging from the lowest East Scotia Basin to the highest Mariana Trough. The asymmetric topography of these young back-arc basins seems to be caused by the rollback rate of downgoing slab under the basin. As the rollback rate increases, the asymmetry rate systematically decreases.

  • PDF

Meiobenthic Communities in Extreme Deep-sea Environment (심해 극한 환경에서의 중형저서동물 군집)

  • Kim Dong-Sung;Min Won-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.spc1
    • /
    • pp.203-213
    • /
    • 2006
  • The spatial patterns of meiobenthic communities in deep-sea sediment were examined. Sediment samples for analyzing of meiobenthic community structure were collected using a remote operated vehicle (ROV), multiple corer TV grab at 20 stations at five sites. In all, 15 meiofauna groups were recorded. Nematodes were the most abundant taxon. Benthic foraminiferans, harpacticoid copepods, polychaetes, and crustacean naupii were also dominant groups at all sites. The total meiofauna density at the study sites varied from 49 to 419 ind./$10cm^2$. The maximum density was recorded at a site located in Challenger Deep in the Mariana trench where simple benthic foraminifera with organic walls flourish. These distinctive taxa seem to be characteristic of the deepest ocean depths. Active hydrothermal sediments contain up to 150 harpacticoid copepods per $10cm^2$ of sediment. In a inactive ridge sediments, devoid of macrofaunal organisms:, the abundance of harpacticoid copepods never exceeded 15 ind./$10cm^2$. Multivariate analysis (multidimensional scaling) revealed significant differences in community structure among the three regions; near an active hydrothermal vent, in the deepest ocean depths and at typical deep-sea bed sites.

Multi-beam Echo Sounder Operations for ROV Hemire - Exploration of Mariana Hydrothermal Vent Site and Post-Processing (심해무인잠수정 해미래를 이용한 다중빔 음향측심기의 운용 - 마리아나 열수해역 탐사 결과 및 후처리 -)

  • Park, Jin-Yeong;Shim, Hyungwon;Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Yoo, Seong-Yeol;Jeong, Woo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • This paper presents the operations of a multi-beam echo sounder (MBES) installed on the deep-sea remotely operated vehicle (ROV) Hemire. Hemire explored hydrothermal vents in the Forecast volcano located near the Mariana Trench in March of in 2006. During these explorations, we acquired profiling points on the routes of the vehicle using the MBES. Information on the position, depth, and attitude of the ROV are essential to obtain higher accuracy for the profiling quality. However, the MBES installed on Hemire does not have its own position and depth sensors. Although it has attitude sensors for roll, pitch, and heading, the specifications of these sensors were not clear. Therefore, we had to merge the high-performance sensor data for the motion and position obtained from Hemire into the profiling data of the MBES. Then, we could properly convert the profiling points with respect to the Earth-fixed coordinates. This paper describes the integration of the MBES with Hemire, as well as the coordinate conversion between them. Bathymetric maps near the summit of the Forecast volcano were successfully collected through these processes. A comparison between the bathymetric maps from the MBES and those from the Onnuri Research Vessel, the mother ship of the ROV Hemire for these explorations, is also presented.

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data (지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구)

  • Kim, Chang-Hwan;Kim, Ho;Jeong, Eui-Young;Park, Chan-Hong;Go, Young-Tak;Lee, Seung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.22-40
    • /
    • 2009
  • Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion (분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구)

  • Ji-hoon Park;Sung-Joon Chang;Michael Witek
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.365-384
    • /
    • 2023
  • We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

Feeding Habits of the Glass Eel Anguilla japonica Determined by C and N Stable Isotopes in the Nakdong River Estuary of the Korean Peninsula (안정동위원소를 이용한 낙동강 하구 실뱀장어의 먹이 습성 분석)

  • KIM, JEONG BAE;LEE, WON-CHAN;KIM, HYUNG CHUL;HONG, SOKJIN;PARK, KYEONG DONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Wild glass eels found in the Korean peninsula are thought to migrate along the North Equatorial Current and undergo the processes of spawning and incubation in the Mariana Trench. Juveniles of the wild glass eels are collected from the southern and western coasts of the Korean peninsula and used as seeds for aquaculture. To investigate the feeding behavior of wild glass eels, we collected glass eels from the Nakdong River estuary during March and April 2014 and analyzed the total length, wet weight, dry weight, carbon and nitrogen contents, and stable isotope ratio of eels as well as water temperature and salinity. Water temperature in the Nakdong River estuary was $13.2{\pm}1.0$ (mean ${\pm}$ 1SE; range, $10.1{\sim}15.7)^{\circ}C$ and salinity was $24.8{\pm}2.4$ (13.2~34.0), showed a lower range from 13.2 to 30.0 (a mean of 21.2) when the floodgates were opened. The total length of glass eels was $56.5{\pm}0.2$ (51.0~63.6) mm, wet weight was $70.9{\pm}1.4$ (33.6~133.2) mg, and dry weight was $16.5{\pm}0.3$ (10.1~29.1) mg. Carbon and nitrogen contents of glass eels were $51.0{\pm}0.8%$ and $13.9{\pm}0.1%$, respectively. Mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of glass eels collected from the Nakdong River estuary were -20.9±0.2‰ and 6.1±0.1‰, displaying similar values to those of leptocephalus, glass eel larvae collected from the North Equatorial Current. Therefore, this result suggest that the glass eels collected from the Nakdong River estuary do not feed on prey after metamorphosis from eel larvae to glass eels their migration.

Food Habits of the Glass eel Anguilla japonica in the West Coast Estuaries of Korean Peninsula Determined by Using C and N Stable Isotopes (안정동위원소를 이용한 서해연안 실뱀장어의 먹이 습성)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Dae-Jung;Seong, Ki Baik;Choi, Hee-Gu;Choi, Woo-Jeung;Hwang, Hak Bin;Hong, Sokjin;Kim, Hyung Chul;Park, Sung-Eun;Shim, Jeong Hee;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.206-213
    • /
    • 2013
  • Glass eels (Anguilla japonica) are caught in the west coast of Korea on their migratory route from the breeding grounds in the Mariana Trench along the North Equatorial Current and the Kuroshio Current. To identify the food source of natural glass eels, we analyzed the stable C and N isotopes of glass eels caught in April 2012 and investigated possible food sources in the survey area. In particular, with respect to the stable C and N isotopes of particulate organic matter, we extended the surveying area to the northern parts of East China Sea as well as the west coast of Korea. The stable C and N isotope ratios of the glass eels caught in the west coast were found to be $-20.7{\pm}0.1$‰ and $5.0{\pm}0.2$‰, respectively. The stable C and N isotope ratios of the particulate organic matter in the west coast of Korea, in which the glass eels are assumed to eat the particulate organic matter as food source, were estimated to be $-24.0{\pm}0.3$‰ and $2.8{\pm}0.4$‰, respectively. Similar data were obtained from the northern part of the East China Sea, $-24.5{\pm}0.5$‰ and $0.8{\pm}0.3$‰. The stable isotope ratios showed values differing from the stepwise increasing rates up the food web in natural aquatic ecosystem, showing that particulate organic matter in the west coast of Korea and East China Sea was not served as the glass eels food source. This result suggested that the glass eels caught in the west coast might not assimilate nutrition from the marine environment during long migration.