Browse > Article
http://dx.doi.org/10.7850/jkso.2009.14.1.022

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data  

Kim, Chang-Hwan (Dokdo Research Center, East Sea Research Institute, KORDI)
Kim, Ho (Dokdo Research Center, East Sea Research Institute, KORDI)
Jeong, Eui-Young (Dokdo Research Center, East Sea Research Institute, KORDI)
Park, Chan-Hong (East Sea Research Institute, KORDI)
Go, Young-Tak (Deep-sea & Marine Georesources Research Department, KORDI)
Lee, Seung-Hoon (Dokdo Research Center, East Sea Research Institute, KORDI)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.1, 2009 , pp. 22-40 More about this Journal
Abstract
Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.
Keywords
Hydrothermal vent; Detailed bathymerty; Magnetic anomaly; Magnetization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Karig, D.E., 1971. Structural History of the Mariana Island Arc System. Geol. Soc. Amer. Bull., 82: 323−344   DOI
2 Mller, R.D., W.R. Roest, J.Y. Royer, L.M. Gahagan and J.G. Sclater, 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res., 102: 3211−3214   DOI
3 Nabighian, M.N., 1974. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophys., 39: 85−72   DOI
4 Hart, S.R., W.E. Glassley and D.E. Karig, 1972. Baslats and Sea Floor Spreading behind the Mariana Island Arc. Earth Planet. Sci. Lett., 15: 12−18   DOI   ScienceOn
5 Smith, D.K., M.A. Tivey, H. Schouten and J.R. Cann, 1999. Locating the spreading axis along 80 km of the Mid-Atlantic Ridge south of the Atlantis Transform. J. Geophys. Res., 104: 7599−7612   DOI
6 Embley, R.W., E.T. Baker, W.W. Chadwick Jr., J.E. Lupton, J.E. Resing, G.J. Massoth and K. Nakamura, 2004. Explorations of Marina arc volcanoes reveal new hydrotheral systems. EOS, 85: 37−40   DOI
7 Meijer, A., 1974. A Study of the Geochemistry of the Mariana Island Arc System and Its Bearing on the Genesis and Evolution of Volcanic Arc Magmas. Unpublished Ph. D. thesis, U. C. Santa Barbara, 214 pp
8 Tamaki, K. and E. Honza, 1991. Global tectonics and formation of marginal basins: Role of the western Pacific. Episodes, 14: 224−230
9 Tracey, J.I., S.O. Schlanger, J.T. Stark, D.B. Doan and H.G. May, 1963. General Geology of Guam. U. S. Gel. Sur. Prof. Paper 403-A, 104 pp
10 민경덕, 서정희, 권병두, 1987. 응용지구물리학. 우성문화사, 772 pp
11 Tivey, M.A, H. Schouten, and M.C. Kleinrock, 2003, A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at $26^{\circ}$N: Implications for the tectonic evolution of the TAG segment. J. Geophys. Res., 108: B5, 2277   DOI
12 Eulcia, G. and J. Escartn, 1999. Crustal accretion at mid-cean ridges and backarc spreading centers: Insights from the Mid-Atlantic Ridge, the Bransfield basin and the North Fiji Basin. Contr. Sci., 1: 175−192
13 Stern R.J. and L.D. Bibee, 1984. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc. Contr. Mineral Petr., 86: 159−169   DOI
14 Seama, N. and T. Fujiwara, 1993. Geomagnetic anomalies in the Mariana Trough $18^{\circ}$N. In: Preliminary report of the Hakuhomaru cruise KH92-1, edit by Segawa., J. Ocean Res. Inst. Univ. Tokyo, pp. 70−73
15 Baker, E.T., J.A. Resing, S.l. Walker, F. Marinez, B. Taylor and K. Nakamura, 2006. Abundant hydrothermal venting along meltrich and melt-free ridge segments in the Lau back-arc basin. Geophys. Res. Lett., 33: L07308, doi:10.1029/2005GL025283   DOI   ScienceOn
16 Tivey, M.A., 1994. Fine-scale magnetic anomaly field over the southern Juan de Fuca Ridge: Axial magnetization low and implications for crustal structure. J. Geophs. Res., 99: 4833−4855   DOI
17 Bibee, L.D., G.G. Shor and R.S. Lu, 1980. Inter-Arc spreding in the Mariana Trough. Mar. Geol., 35: 183−197   DOI   ScienceOn
18 Honza, E., 1991. The Tertiary arc chain in the western Pacific. Tectonophy., 187: 285−303   DOI   ScienceOn
19 Tivey, M.A., P.A. Rona, and H. Schouten, 1993. Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothemal field, Mid-Atlantic Ridge $26^{\circ}$$\N. Earth Planet. Sci. Lett., 115: 101−115   DOI   ScienceOn
20 Corliss, J.B., M. Lyle and J. Dymond, 1978. The chemistry of hydrothermal mounds near the Galapagos rift. Earth Planet. Sci. Lett., 40: 12−24   DOI   ScienceOn
21 Hussong, D.M. and S. Uyeda, 1981. Tectonic Processes and history of the Mariana Arc, A synthesis of the results of Deep Sea Drilling Leg 60. Init. Rep. DSDP., 60: 909−929
22 Bird, P, 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosys., 4: 1027, doi:10.1029/2001GC000252   DOI
23 German, C.R. and K.L. Von Damm, 2004. Hydrothermal Processes. In: Treatise on Geochemistry, 6, edit by Holland H.D and K.K. Turekian, Elsevier, pp. 181−222
24 Parker, R.L. and S.P. Huestis, 1974. The inversion of magnetic anomalies in the presence of topography. J. Geophys. Res., 79: 1587−1593   DOI
25 Cloud, P.E., R.G. Schmidt Jr. and H.W. Burke, 1956. Geology of Saipan, Mariana Islands - Part 1. General Geology. U. S. Gel. Sur. Prof. Paper 280-A, 126 pp
26 Embley, R.W., W.W. Chadwick Jr., E.T. Baker, D.A. Butterfield, J.A. Resing, C.E.J. de Ronde, V. Tunnicliffe, J.E. Lupton, S.K. Juniper, K.H. Rubin, R.J. Stern, G.T. Lebon, K. Nakamura, S.G. Merle, J.R. Hein, D.A. Wiens and Y. Tamura, 2006. Long-term eruptive activity at a submarine arc volcano. Nature, 441: 494−497   DOI   PUBMED   ScienceOn
27 Kennett, J., 1982. Marine Geology, Prentice-Hall, 747 pp
28 Morgan, P.J. and Y.J. Chen, 1993. The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res., 98: 6283−6297   DOI
29 한국해양연구원, 2007. 북서태평양이 한반도 주변해(대한해협)에 미치는 영향 연구. 한국해양연구원, BSPP 07401-1917-1, 783 pp
30 Baker, E.T. and C.R. German, 2004. On the Global Distribution of Hydrothermal Vent Fields, In: Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophysical Monograph Series 148, edit by German, C.R., J. Lin and L.M. Parson. America Geophysical Union, pp. 245−266
31 Kroenke, L.W., 1984. Introduction. In: Cenozoic Tectonic Development of the Southwest Pacific, Tech. Bull., 6, edit by Kroenke., L.W., UN ESCAP, CCOP/SOPAC, pp. 1−11
32 Nabighian, M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophy., 37: 507−517   DOI