DOI QR코드

DOI QR Code

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion

분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구

  • 박지훈 (강원대학교 지구물리학과) ;
  • 장성준 (강원대학교 지구물리학과) ;
  • Received : 2023.06.05
  • Accepted : 2023.08.07
  • Published : 2023.08.30

Abstract

We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

서태평양에 위치한 총 173개의 지진 관측소에서 획득한 2,026개의 지진 자료에 분할 파형 역산을 적용하여 서태평양 지역 맨틀 전이대 깊이까지 S파 등방성 속도 및 방사 이방성에 대한 연구를 수행했다. 그 결과 필리핀해판의 경우 페러스-벨라 분지(Parece-Vela basin)에서 고속도 이상이 30 km 깊이까지 나타나는 것에 비해 서필리핀 분지(West Philippine basin)에서 고속도 이상이 50 km 깊이까지 유지되었다. 페러스-벨라 분지 하부 약 80 km 깊이부터 나타나는 저속도 이상이 깊이가 깊어짐에 따라 서필리핀 분지로 확장되는 경향을 보였는데 이는 페러스-벨라 분지와 서필리핀 분지 사이의 연령차이에 의한 것으로 보인다. 또한 캐롤라인 해저 산열(Caroline seamount chain) 및 캐롤라인 판의 하부에서 강한 저속도 이상이 약 200 km 깊이까지 보인다. 방사 이방성 모델의 경우 서태평양에서 전반적으로 양의 이방성에 우세하게 나타났으며 페러스-벨라 분지에서 약 50 km 깊이까지, 마리아나 해구를 따라 섭입하는 태평양판의 약 220 km 깊이부터 음의 이방성이 관측되었다. 캐롤라인 해저산열 하부 약 200 km 깊이까지 강한 양의 이방성이 나타났는데 이는 해저산열을 형성한 플룸과 이동하는 태평양판 사이에 발생한 끌림(drag)에 의한 것으로 보인다. 온통-자바 해대(Ontong-Java plateau) 지역 하부에서는 40 ~ 180 km 깊이에서 고속도 이상이 발견되었으며, 이는 탈수된 플룸 물질의 부착으로 인한 비정상적으로 두꺼운 암석권의 존재를 나타낸다.

Keywords

Acknowledgement

이 논문은 행정안전부의 방재안전분야 전문인력 양성사업의 지원을 받았으며, 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No.2019R1A6A1A03033167), 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No.2019R1A2C208506111)입니다.

References

  1. Ai, S., Zheng, Y. and Wang, S. (2020) Crustal deformations of the central North China Craton constrained by radial anisotropy. Journal of Geophysical Research: Solid Earth, v.125, e2019JB018374. doi: 10.1029/2019JB018374 
  2. Albuquerque Seismological Laboratory/USGS. (2014) Global Seismograph Network (GSN-IRIS/USGS). International Federation of Digital Seismograph Networks. doi: 10.7914/SN/IU 
  3. Altis, S. (1999) Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis. Tectonophysics, v.313(3), p.271-292. doi: 10.1016/S0040-1951(99)00204-8 
  4. Barruol, G., Helffrich, G. and Vauchez, A. (1997) Shear wave splitting around the northern Atlantic: frozen Pangaean lithospheric anisotropy? Tectonophysics, v.279(1), p.135-148. doi: 10.1016/S0040-1951(97)00126-1 
  5. Bird, P. (2003) An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, v.4(3). doi: 10.1029/2001GC000252 
  6. Becker, T. W., Kustowski, B. and Ekstrom, G. (2008) Radial seismic anisotropy as a constraint for upper mantle rheology. Earth and Planetary Science Letters, v.267(1), p.213-227. doi: 10.1016/j.epsl.2007.11.038 
  7. Boschman, L.M. and van Hinsbergen, D.J.J. (2016) On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean. Science Advances, v.2(7), e1600022. doi: 10.1126/sciadv.1600022 
  8. Brown, D., Ryan, P.D., Afonso, J.C., Boutelier, D., Burg, J.P., Byrne, T., Calvert, A., Cook, F., DeBari, S., Dewey, J.F., Gerya, T.V., Harris, R., Herrington, R., Konstantinovskaya, E., Reston, T. and Zagorevski, A. (2011) Arc-Continent Collision: The Making of an Orogen. In D. Brown and P. D. Ryan (Eds.), Arc-Continent Collision (pp. 477-493). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-88558-0_17 
  9. Chang, S.-J. and Ferreira, A. (2019). Inference on Water Content in the Mantle Transition Zone Near Subducted Slabs From Anisotropy Tomography. Geochemistry Geophysics Geosystems, v.20, p.1189-1201. doi: 10.1029/2018GC008090 
  10. Chang, S.-J., Ferreira, A.M.G., Ritsema, J., van Heijst, H.J. and Woodhouse, J.H. (2015) Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research: Solid Earth, v.120(6), p.4278-4300. doi: 10.1002/2014JB011824 
  11. Covellone, B.M., Savage, B. and Shen, Y. (2015) Seismic wave speed structure of the Ontong Java Plateau. Earth and Planetary Science Letters, v.420, p.140-150. doi: 10.1016/j.epsl.2015.03.033 
  12. Douglas Wiens and Simon Klemperer. (2003) US-Japan Collaborative Research: Multi-scale seismic imaging of the Mariana Subduction Factory [Data set]. International Federation of Digital Seismograph Networks. doi: 10.7914/SN/XO_2003 
  13. Douglas Wiens. (2006) Anatahan and submarine Mariana volcanos [Data set]. International Federation of Digital Seismograph Networks. doi:10.7914/SN/ZC_2006 
  14. Douglas Wiens. (2012) Mantle serpentinization and water cycling through the Mariana Trench and Forearc [Data set]. International Federation of Digital Seismograph Networks. doi: 10.7914/SN/XF_2012 
  15. Ekstrom, G., Nettles, M. and Dziewonski, A.M. (2012) The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, v.200-201, p.1-9. doi: 10.1016/j.pepi.2012.04.002 
  16. Estey, L.H. and Douglas, B.J. (1986) Upper mantle anisotropy: A preliminary model. Journal of Geophysical Research: Solid Earth, v.91(B11), p.11393-11406. doi: 10.1029/JB091iB11p11393 
  17. Fang, Y., Li, J., Li, M., Ding, W. and Zhang, J. (2011). The formation and tectonic evolution of Philippine Sea Plate and KPR. Acta Oceanologica Sinica, v.30(4), p.75-88. doi: 10.1007/s13131-011-0135-2 
  18. French, S.W. and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, v.525(7567), p.95-99. doi: 10.1038/nature14876 
  19. Fuji, N., Jang, H., Nakao, A., Kim, Y., Fernandez-Blanco, D., Lee, S.-M., Schroeder, A. and Konishi, K. (2021) A Possible Roll-Over Slab Geometry Under the Caroline Plate Imaged by Monte Carlo Finite-Frequency Traveltime Inversion of Teleseismic SS Phases [Brief Research Report]. Frontiers in Earth Science, v.9. doi: 10.3389/feart.2021.593947 
  20. Gaina, C. and Muller, D. (2007). Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth-Science Reviews, v.83(3), p.177-203. doi: 10.1016/j.earscirev.2007.04.004 
  21. Geoffrey Abers and Jim Gaherty. (2010) Papua Peninsula-Woodlark Rift Imaging Experiment [Data set]. International Federation of Digital Seismograph Networks. doi: 10.7914/SN/ZN_2010 
  22. Guo, Z., Yang, Y. and Chen, Y.J. (2016) Crustal radial anisotropy in Northeast China and its implications for the regional tectonic extension. Geophysical Journal International, v.207(1), p.197-208. doi: 10.1093/gji/ggw261 
  23. Harrison, C.G.A. (2016). The present-day number of tectonic plates. Earth, Planets and Space, v.68(1), p.37. doi: 10.1186/s40623-016-0400-x 
  24. Hegarty, K.A. and Weissel, J.K. (1988) Complexities in the Development of the Caroline Plate Region, Western Equatorial Pacific. In A.E.M. Nairn, F.G. Stehli and S. Uyeda (Eds.), The Ocean Basins and Margins: Volume 7B: The Pacific Ocean (pp. 277-301). Springer US. doi: 10.1007/978-1-4615-8041-6_6 
  25. Holm, R.J., Rosenbaum, G. and Richards, S.W. (2016) Post 8Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Science Reviews, v.156, p.66-81. doi: 10.1016/j.earscirev.2016.03.005 
  26. Institute of Earth Sciences, Academia Sinica, Taiwan. (1996) Broadband Array in Taiwan for Seismology [Data set]. International Federation of Digital Seismogra-ph Networks. doi: 10.7914/SN/TW 
  27. Ishikawa, A., Maruyama, S. and Komiya, T. (2004). Layered Lithospheric Mantle Beneath the Ontong Java Plateau: Implications from Xenoliths in Alnoite, Malaita, Solomon Islands. Journal of Petrology, v.45(10), p.2011-2044. doi: 10.1093/petrology/egh046 
  28. Isse, T., Kawakatsu, H., Yoshizawa, K., Takeo, A., Shiobara, H., Sugioka, H., Ito, A., Suetsugu, D. and Reymond, D. (2019) Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution. Earth and Planetary Science Letters, v.510, p.116-130. doi: 10.1016/j.epsl.2018.12.033 
  29. Isse, T., Shiobara, H., Tamura, Y., Suetsugu, D., Yoshizawa, K., Sugioka, H., Ito, A., Kanazawa, T., Shinohara, M., Mochizuki, K., Araki, E., Nakahigashi, K., Kawakatsu, H., Shito, A., Fukao, Y., Ishizuka, O. and Gill, J.B. (2009) Seismic structure of the upper mantle beneath the Philippine Sea from seafloor and land observation: Implications for mantle convection and magma genesis in the Izu-Bonin-Mariana subduction zone. Earth and Planetary Science Letters, v.278(1), p.107-119. doi: 10.1016/j.epsl.2008.11.032 
  30. Isse, T., Suetsugu, D., Ishikawa, A., Shiobara, H., Sugioka, H., Ito, A., Kawano, Y., Yoshizawa, K., Ishihara, Y., Tanaka, S., Obayashi, M., Tonegawa, T. and Yoshimitsu, J. (2021) Seismic evidence for a thermochemical mantle plume underplating the lithosphere of the Ontong Java Plateau. Communications Earth & Environment, v.2(1), 98. doi: 10.1038/s43247-021-00169-9 
  31. Jackson, M.G., Price, A.A., Blichert-Toft, J., Kurz, M.D. and Reinhard, A.A. (2017). Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He. Chemical Geology, v.455, p.385-400. doi: 10.1016/j.chemgeo.2016.10.038 
  32. Keating, B.H., Mattey, D.P., Helsley, C.E., Naughton, J.J., Epp, D., Lazarewicz, A. and Schwank, D. (1984). Evidence for a hot spot origin of the Caroline Islands. Journal of Geophysical Research: Solid Earth, v.89(B12), p.9937-9948. doi: 10.1029/JB089iB12p09937 
  33. Kendall, E., Ferreira, A.M.G., Chang, S.-J., Witek, M. and Peter, D. (2021). Constraints on the Upper Mantle Structure Beneath the Pacific From 3-D Anisotropic Waveform Modeling. Journal of Geophysical Research: Solid Earth, v.126(4), e2020JB020003. doi:10.1029/2020JB020003 
  34. Klosko, E.R., Russo, R.M., Okal, E.A. and Richardson, W.P. (2001) Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau. Earth and Planetary Science Letters, v.186(3), p.347-361. doi: 10.1016/S0012-821X(01)00235-7 
  35. Lebedev, S., Nolet, G., Meier, T. and Van Der Hilst, R.D. (2005) Automated multimode inversion of surface and S waveforms. Geophysical Journal International, v.162(3), p.951-964. doi: 10.1111/j.1365-246X.2005.02708.x 
  36. Lee, S.-M. (2004) Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction. Journal of Geodynamics, v.37(1), p.83-102. doi: 10.1016/j.jog.2003.10.003 
  37. Mahoney, J.J., Storey, M., Duncan, R.A., Spencer, K.J. and Pringle, M. (1993) Geochemistry and Age of the Ontong Java Plateau. In The Mesozoic Pacific: Geology, Tectonics, and Volcanism, v.77, p.233-261. doi: 10.1029/GM077p0233 
  38. Mann, P. and Taira, A. (2004) Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, v.389(3), p.137-190. doi: 10.1016/j.tecto.2003.10.024 
  39. Matsuno, T., Suetsugu, D., Baba, K., Tada, N., Shimizu, H., Shiobara, H., Isse, T., Sugioka, H., Ito, A., Obayashi, M. and Utada, H. (2017) Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic thickness, and water content. Earth and Planetary Science Letters, v.462, p.189-198. doi: 10.1016/j.epsl.2016.12.045 
  40. Mrozowski, C.L. and Hayes, D.E. (1979) The evolution of the Parece Vela Basin, eastern Philippine Sea. Earth and Planetary Science Letters, v.46(1), p.49-67. doi: 10.1016/0012-821X(79)90065-77. 
  41. Muller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., BarnettMoore, N., Hosseinpour, M., Bower, D.J. and Cannon, J. (2016). Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences, v.44(1), p.107-138. doi: 10.1146/annurev-earth-060115-012211 
  42. Neal, C.R., Mahoney, J.J., Kroenke, L.W., Duncan, R.A. and Petterson, M.G. (1997) The Ontong Java Plateau. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, v.100, p.183-216. doi: 10.1029/GM100p0183 
  43. Nocedal, J. and Wright, S.J. (2006) Numerical optimization, Springer. doi: 10.1007/978-0-387-40065-5 
  44. Nolet, G. (1990) Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research: Solid Earth, v.95(B6), p.8499-8512. doi: 10.1029/JB095iB06p08499 
  45. Obayashi, M., Yoshimitsu, J., Suetsugu, D., Shiobara, H., Sugioka, H., Ito, A., Isse, T., Ishihara, Y., Tanaka, S. and Tonegawa, T. (2021) Interrelation of the stagnant slab, Ontong Java Plateau, and intraplate volcanism as inferred from seismic tomography. Scientific Reports, v.11(1), 20966. doi: 10.1038/s41598-021-99833-5 
  46. Perfit, M.R. and Fornari, D.J. (1982) Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: Tectonic implications. Tectonophysics, v.87(1), p.279-313. doi: 10.1016/0040-1951(82)90230-X 
  47. Qiao, Q., Liu, X., Zhao, D., Li, S., Zhao, S., Zhao, L. and Wang, X. (2021) Upper Mantle Structure Beneath Mariana: Insights From Rayleigh-Wave Anisotropic Tomography. Geochemistry, Geophysics, Geosystems, v.22(11), e2021GC009902. doi: 10.1029/2021GC009902 
  48. Richardson, W.P., Okal, E.A. and Van der Lee, S. (2000) Rayleigh-wave tomography of the Ontong-Java Plateau. Physics of the Earth and Planetary Interiors, v.118(1), p.29-51. doi: 10.1016/S0031-9201(99)00122-3 
  49. Schellart, W.P., Lister, G.S. and Toy, V.G. (2006) A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews, v.76(3), p.191-233. doi: 10.1016/j.earscirev.2006.01.002 
  50. Sclater, J. (1972) Heat Flow and Elevation of the Marginal Basins of the Western Pacific. Journal of Geophysical Research, v.77, p.5705-5719. doi: 10.1029/JB077i029p05705 
  51. Shiobara, H. and Kanazawa, T. (2009) Development of a Light Weight and Autonomic Sensor System for Ocean Bottom Seismometer. Zisin (Journal of the Seismological Society of Japan. 2nd ser.), v.61, p.137-144. doi: 10.4294/zisin.61.137 
  52. Stachnik, J.C., Sheehan, A.F., Zietlow, D.W., Yang, Z., Collins, J. and Ferris, A. (2012). Determination of New Zealand Ocean Bottom Seismometer Orientation via Rayleigh-Wave Polarization. Seismological Research Letters, v.83(4), p.704-713. doi: 10.1785/0220110128 
  53. Sturgeon, W., Ferreira, A.M.G., Faccenda, M., Chang, S.-J. and Schardong, L. (2019). On the Origin of Radial Anisotropy Near Subducted Slabs in the Midmantle. Geochemistry, Geophysics, Geosystems, v.20(11), p.5105-5125. doi: 10.1029/2019GC008462 
  54. Suetsugu, D., Shiobara, H., Sugioka, H., Tada, N., Ito, A., Isse, T., Baba, K., Ichihara, H., Ota, T., Ishihara, Y., Tanaka, S., Obayashi, M., Tonegawa, T., Yoshimitsu, J., Kobayashi, T. and Utada, H. (2018). The OJP array: seismological and electromagnetic observation on seafloor and islands in the Ontong Java Plateau. JAMSTEC Report of Research and Development, v.26, p.54-64. doi: 10.5918/jamstecr.26.54 
  55. Sun, B., Kaus, B.J.P., Yang, J., Lu, G., Wang, X., Wang, K. and Zhao, L. (2021) Subduction Polarity Reversal Triggered by Oceanic Plateau Accretion: Implications for Induced Subduction Initiation. Geophysical Research Letters, v.48(24), e2021GL095299. doi: 10.1029/2021GL095299 
  56. Takeo, A., Forsyth, D.W., Weeraratne, D.S. and Nishida, K. (2014) Estimation of azimuthal anisotropy in the NW Pacific from seismic ambient noise in seafloor records. Geophysical Journal International, v.199(1), p.11-22. doi: 10.1093/gji/ggu240 
  57. Taylor, B. (2006) The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, v.241(3), p.372-380. doi: 10.1016/j.epsl.2005.11.049 
  58. Tsuboi, S. (1995) POSEIDON, IRIS Newsletter, 16, 8-9
  59. USGS Alaska Anchorage. (2000) USGS Northern Mariana Islands Network [Data set]. International Federation of Digital Seismograph Networks. doi: 10.7914/SN/MI 
  60. van der Lee, S. and Nolet, G. (1997) Upper mantle S velocity structure of North America. Journal of Geophysical Research: Solid Earth, v.102(B10), p.22815-22838. doi: 10.1029/97JB01168 
  61. Wang, N., Montagner, J.-P., Fichtner, A. and Capdeville, Y. (2013). Intrinsic versus extrinsic seismic anisotropy: The radial anisotropy in reference Earth models. Geophysical Research Letters, v.40(16), p.4284-4288. doi: 10.1002/grl.50873 
  62. Watanabe, T., Epp, D., Uyeda, S., Langseth, M. and Yasui, M. (1970) Heat flow in the Philippine Sea. Tectonophysics, v.10(1), p.205-224. doi:10.1016/0040-1951(70)90107-1 
  63. Wessel, P. and Kroenke, L. (1997) A geometric technique for relocating hotspots and refining absolute plate motions. Nature, v.387(6631), p.365-369. doi: 10.1038/387365a0 
  64. Witek, M., Lee, S.M., Chang, S.J. and van der Lee, S. (2023) Waveform inversion of large data sets for radially anisotropic Earth structure. Geophysical Journal International, v.232(2), p.1311-1339. doi: 10.1093/gji/ggac393 
  65. Yamamoto, M., Morgan, J. and Morgan, W.J. (2007) Global plume-fed asthenosphere flow-I: Motivation and model development. Special Paper of the Geological Society of America, v.430, p.165-188. doi: 10.1130/2007.2430(175) 
  66. Yan, C.Y. and Kroenke, L.W. (1993) A plate tectonic reconstruction of the southwest Pacific, 0-100 Ma. Proceedings of the Ocean Drilling Program, Scientific Results, v.130, p.697-707.  https://doi.org/10.2973/odp.proc.sr.130.055.1993
  67. Zhang, T.-y., Li, P.-f., Shang, L.-n., Cong, J.-y., Li, X., Yao, Y.-j. and Zhang, Y. (2022). Identification and evolution of tectonic units in the Philippine Sea Plate. China Geology, v.5(1), p.96-109. doi: 10.1016/S2096-5192(22)00089-1 
  68. Zhao, D., Fujisawa, M. and Toyokuni, G. (2017) Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9). Scientific Reports, v.7(1), 44487. doi: 10.1038/srep44487