• Title/Summary/Keyword: Map Mapping

Search Result 1,438, Processing Time 0.03 seconds

A Thesis of Field Survey Standard for Quality Improvement of Digital Map (수치지도 품질향상을 위한 지리조사 기준 정립)

  • Choi, Seok-Keun;Lee, Soung-Ki;Jo, Ui-Hwan;Park, Sang-Jeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2009
  • Field surveys for the digital map being constructed is being conducted using various work guide books based on the digital mapping internal rule. However, a modification of a rule used for paper map construction is being used for the digital mapping rule, which is causing many problems with the quality of the digital map. Therefore, to construct a high-quality digital map, general standards related to conducting field surveys need to be reviewed, and it's extremely important to construct an accurate digital map based on this. Accordingly, in this study, problems related to conducting field surveys for the construction of the digital map are analyzed in order to establish more suitable field survey standards for constructing an accurate digital map. To this end, work regulations related to construction of a digital map were analyzed, and attribute and field survey data were compared to those of a previously-constructed digital map for analysis. By reflecting opinions of field surveyors and related experts to the results of the analysis, more suitable field survey standards for constructing the digital map were presented.

  • PDF

Development and Application of Participatory Mapping for Healthy Agricultural Village (건강한 농촌마을 가꾸기를 위한 참여형 마을지도 그리기 교육기법의 개발과 적용)

  • Kim, Jin-Seok;Yoon, Seong-Yong;Jo, Seong-Yong;Kim, Joo-Ahn;Jo, Seo-Hyeon;Cha, Hea-Ji;Park, Ki-Soo
    • Korean Journal of Health Education and Promotion
    • /
    • v.29 no.5
    • /
    • pp.125-133
    • /
    • 2012
  • Objectives: We used participatory mapping as a tool for empowerment training for promoting health and safety of farmers. We would like to introduce the application of participatory mapping method and report our experiences in a rural community in Korea. Methods: A one-day workshop was offered in six rural villages which were designated as 'safe farm zones'. Each workshop started with an orientation session, followed by a village rounding, presentations of best cases, a group exercise to draw and present a healthy village map. Participants were requested to express their ideas and experiences about healthy and safe residential and working environments on their map. Results: A total of 206 farmers(100 male, 106 female) participated in the workshops. In each workshop, an average of 34.3 farmers participated, and their mean age was 59 years. In the six workshops, the participants proposed a total of 137 action plans. The action plans included improvement of co-working condition, building facilities for recreation, improving traffic safety measures, and improving residential environment. Conclusions: Participatory mapping was successfully developed and applied as a tool for empowering Korean farmers. The participants were able to express their ideas and thoughts about healthy and safe village and action plans on the map. Moreover, some of the actions in the action plans were carried out immediately after workshop.

A Comparison Analysis of Various Approaches to Multidimensional Scaling in Mapping a Knowledge Domain's Intellectual Structure (지적 구조 분석을 위한 MDS 지도 작성 방식의 비교 분석)

  • Lee, Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.2
    • /
    • pp.335-357
    • /
    • 2007
  • There has been many studies representing intellectual structures with multidimensional scaling(MDS) However MDS configuration is limited in representing local details and explicit structures. In this paper, we identified two components of MDS mapping approach; one is MDS algorithm and the other is preparation of data matrix. Various combinations of the two components of MDS mapping are compared through some measures of fit. It is revealed that the conventional approach composed of ALSCAL algorithm and Euclidean distance matrix calculated from Pearson's correlation matrix is the worst of the compared MDS mapping approaches. Otherwise the best approach to make MDS map is composed of PROXSCAL algorithm and z-scored Euclidean distance matrix calculated from Pearson's correlation matrix. These results suggest that we could obtain more detailed and explicit map of a knowledge domain through careful considerations on the process of MDS mapping.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

A Study on the Methods for Solving the Theodorsen Equation for Numerical Conformal Mapping

  • Song, Eun-Jee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Conformal mapping has been a familiar tool of science and engineering for generations. Determination of a conformal map from the unit disk onto the Jordan region is reduced to solving the Theodorsen equation, which is an integral equation for boundary correspondence functions. There are many methods for solving the Theodorsen equation. It is the goal of numerical conformal mapping to find methods that are at once fast, accurate, and reliable. In this paper, we analyze Niethammer’s solution based on successive over-relaxation (SOR) iteration and Wegmann’s solution based on Newton iteration, and compare them to determine which one is more effective. Through several numerical experiments with these two methods, we can see that Niethammer’s method is more effective than Wegmann’s when the degree of the problem is low and Wegmann’s method is more effective than Niethammer’s when the degree of the problem is high.

A Network Mobility Support Scheme in Future LISP Network (미래 LISP 망에서의 망 이동성 지원 방안)

  • Zhang, Xiaolei;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.171-177
    • /
    • 2012
  • Network mobility support has been taken into consideration for users who have multiple terminals to enjoy the seamless connectivity. This paper proposes a network mobility support scheme in the LISP architecture. During the mobile router attachment, the EID-to-RLOC mapping database is refreshed in the map server. Furthermore, map update is developed to support smooth handoff for the mobile network. An analysis of performance is given by comparing the proposed scheme with NEMO.

A Study on Digital Mapping using LiDAR Data (LiDAR 데이터를 이용한 수치지도 제작 방안 연구)

  • Lee, Hyun-Jik;Kim, Hong-Sub;Ru, Ji-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.33-42
    • /
    • 2006
  • Recently, the studies on the extraction of 3-dimension position information and attribute information of ground surface using LiDAR data. LiDAR data has high locational accuracy, and advantage that can process data more fast because there's not coordinate transform when acquire of Data justly the ground coordinate by Acquiring. The paper using only LiDAR data Manufacture road, building, contour That occupy a many parts of Digital Map. Estimated for possibility of Digital mapping using only LiDAR data As that compare accuracy with Digital map.

  • PDF

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Gamma Correction for Local Brightness and Detail Enhancement of HDR Images (HDR 영상의 지역적 밝기 및 디테일 향상을 위한 감마 보정 기법)

  • Lee, Seung-Yun;Ha, Ho-Gun;Song, Kun-Woen;Ha, Yeong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.837-847
    • /
    • 2016
  • Tone mapping for High Dynamic Range(HDR) image provides matching human visual perception between real world scene and displayable devices. Recently, a tone mapping algorithm based on localized gamma correction is proposed. This algorithm is using human visual properties of contrast and colorfulness with background intensity, generating a weight map for gamma correction. However, this method have limitations of controlling enhancement region as well as generating halo artifacts caused by the weight map construction. To overcome aforementioned limitations, proposed algorithm in this paper modifies previous weight map, considering base layer intensity of input luminance channel. By determining enhancement region locally and globally based on base layer intensity, gamma values are corrected accordingly. Therefore, proposed algorithm selectively enhances local brightness and controls strength of edges. Subjective evaluation using z-score shows that our proposed algorithm outperforms the conventional methods.

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.