• Title/Summary/Keyword: Many-objective optimization

Search Result 199, Processing Time 0.027 seconds

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

Intercropping in Rubber Plantation Ontology for a Decision Support System

  • Phoksawat, Kornkanok;Mahmuddin, Massudi;Ta'a, Azman
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Planting intercropping in rubber plantations is another alternative for generating more income for farmers. However, farmers still lack the knowledge of choosing plants. In addition, information for decision making comes from many sources and is knowledge accumulated by the expert. Therefore, this research aims to create a decision support system for growing rubber trees for individual farmers. It aims to get the highest income and the lowest cost by using semantic web technology so that farmers can access knowledge at all times and reduce the risk of growing crops, and also support the decision supporting system (DSS) to be more intelligent. The integrated intercropping ontology and rule are a part of the decision-making process for selecting plants that is suitable for individual rubber plots. A list of suitable plants is important for decision variables in the allocation of planting areas for each type of plant for multiple purposes. This article presents designing and developing the intercropping ontology for DSS which defines a class based on the principle of intercropping in rubber plantations. It is grouped according to the characteristics and condition of the area of the farmer as a concept of the rubber plantation. It consists of the age of rubber tree, spacing between rows of rubber trees, and water sources for use in agriculture and soil group, including slope, drainage, depth of soil, etc. The use of ontology for recommended plants suitable for individual farmers makes a contribution to the knowledge management field. Besides being useful in DSS by offering options with accuracy, it also reduces the complexity of the problem by reducing decision variables and condition variables in the multi-objective optimization model of DSS.

A Heuristic for Service-Parts Lot-Sizing with Disassembly Option (분해옵션 포함 서비스부품 로트사이징 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon;Lee, Dong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.24-35
    • /
    • 2021
  • Due to increasing awareness on the treatment of end-of-use/life products, disassembly has been a fast-growing research area of interest for many researchers over recent decades. This paper introduces a novel lot-sizing problem that has not been studied in the literature, which is the service-parts lot-sizing with disassembly option. The disassembly option implies that the demands of service parts can be fulfilled by newly manufactured parts, but also by disassembled parts. The disassembled parts are the ones recovered after the disassembly of end-of-use/life products. The objective of the considered problem is to maximize the total profit, i.e., the revenue of selling the service parts minus the total cost of the fixed setup, production, disassembly, inventory holding, and disposal over a planning horizon. This paper proves that the single-period version of the considered problem is NP-hard and suggests a heuristic by combining a simulated annealing algorithm and a linear-programming relaxation. Computational experiment results show that the heuristic generates near-optimal solutions within reasonable computation time, which implies that the heuristic is a viable optimization tool for the service parts inventory management. In addition, sensitivity analyses indicate that deciding an appropriate price of disassembled parts and an appropriate collection amount of EOLs are very important for sustainable service parts systems.

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

Optimal Cost Design of Pipe Network Systems Using Genetic Algorithms (遺傳子 알고리즘을 이용한 管網시스템의 最適費用 設計)

  • Park, Yeong-Su;Kim, Jong-U;Kim, Tae-Gyun;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.71-81
    • /
    • 1999
  • The objective of this study is to develop a model which can design an optimal pipe network system of least cost while satisfying all the design constraints including hydraulic constraints using a genetic algorithm technique. Hydraulic constraints interfaced with the simulation program(KYPIPE) checked feasible solution region. Genetic algorithm(GA) technique is a relatively new optimization technique. The GA is known as a very powerful search and optimization technique especially when solving nonlinear programming problems. The model developed in this study selects optimal pipe diameters in the form of commercial discrete sizes using the pipe diameters and the pumping powers as decision variables. The model not only determines the optimal diameters and pumping powers of pipe network system but also satisfies the discharge and pressure requirements at demanding nodes. The model has been applied to an imaginary and an existing pipe network systems. One system is adopted from journal papers which has been used as an example network by many other researchers. Comparison of the results shows compatibility of the model developed in this study. The model is also applied to a system in Goyang city in order to check the model applicability to finding of optimal pumping powers. It has been found that the developed model can be successfully applied to optimal design of pipe network systems in a relatively simple manner.

  • PDF

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.

Robust Optimal Design of Disc Brake Based on Response Surface Model Considering Standard Normal Distribution of Shape Tolerance (표준정규분포를 고려한 반응표면모델 기반 디스크 브레이크의 강건최적설계)

  • Lee, Kwang-Ki;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1305-1310
    • /
    • 2010
  • In a practical design process, the method of extracting the design space information of the complex system for verifying, improving, and optimizing the design process by taking into account the design variables and their shape tolerance is very important. Finite element analysis has been successfully implemented and integrated with design of experiment such as D-Optimal array; thus, a response surface model and optimization tools have been obtained, and design variables can be optimized by using the model and these tools. Then, to guarantee the robustness of the design variables, a robust design should be additionally performed by taking into account the statistical variation of the shape tolerance of the optimized design variables. In this study, a new approach based on the use of the response surface model is proposed; in this approach, the standard normal distribution of the shape tolerance is considered. By adopting this approach, it is possible to simultaneously optimize variables and perform a robust design. This approach can serve as a means of efficiently modeling the trade-off among many conflicting goals in the applications of finite element analysis. A case study on the robust optimal design of disc brakes under thermal loadings was carried out to solve multiple objective functions and determine the constraints of the design variables, such as a thermal deformation and weight.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.