DOI QR코드

DOI QR Code

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao (College of Civil Engineering, Xuzhou University of Technology) ;
  • Mesut Gor (Firat University, Engineering Faculty, Civil Engineering Department, Division of Geotechnical Engineering) ;
  • Daria K. Voronkova (Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus) ;
  • Hamed Gholizadeh Touchaei (Department of Civil Engineering, Southern Illinois University Edwardsville) ;
  • Hossein Moayedi (Institute of Research and Development, Duy Tan University) ;
  • Binh Nguyen Le (Institute of Research and Development, Duy Tan University)
  • Received : 2021.09.14
  • Accepted : 2023.07.06
  • Published : 2023.07.25

Abstract

Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

Keywords

Acknowledgement

This work was supported by Industry-University-Research Project of Jiangsu Province. Project ID: BY2022-1293

References

  1. Abdel-Basset, M., Chang, V. and Mohamed, R. (2020), "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Neural Comput. Appl., 33, 10685-10718. https://doi.org/10.1007/s00521-020-04820-y
  2. Abdrabbo, F., El Wakil, A. (2016), "Laterally loaded helical piles in sand", Alexandria Eng. J. 55(4), 3239-3245. https://doi.org/10.1016/j.aej.2016.08.020.
  3. Abedini, M. and Zhang, C.W. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., 45(3), 389-408. 10.12989/scs.2022.45.3.389.
  4. Adnan, R.M., Dai, H.L., Kuriqi, A., Kisi, O. and Zounemat-Kermani, M. (2023a), "Improving drought modeling based on new heuristic machine learning methods", Ain Shams Eng. J., 14 (10), 102168. https://doi.org/10.1016/j.asej.2023.102168.
  5. Adnan, R.M., Dai, H.., Mostafa, R.R., Islam, A.R.M.T., Kisi, O, Elbeltagi, A. and Zounemat-Kermani, M. (2023b), "Application of novel binary optimized machine learning models for monthly streamflow prediction", Appl. Water Sci. 13(5), 110. https://doi.org/10.1007/s13201-023-01913-6.
  6. Adnan, R.M., Mostafa, R.R., Dai, H.L., Heddam, S., Kuriqi, A. and Kisi O (2023c) "Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data", Eng. Appl. Comput. Fluid Mech., 17(1), 2192258. https://doi.org/10.1080/19942060.2023.2192258.
  7. Agnihotri, S., Atre, A. and Verma, H. (2020), "Equilibrium optimizer for solving economic dispatch problem", 2020 IEEE 9th Power India International Conference (PIICON) 1-5. https://doi.org/10.1109/PIICON49524.2020.9113048.
  8. Alajmi, M.S. and Almeshal, A.M. (2020), "Prediction and optimization of surface roughness in a turning process using the ANFIS-QPSO method", Materials, 13(13), 2986.
  9. Alwalan, M. and El Naggar, M. (2020), "Finite element analysis of helical piles subjected to axial impact loading", Comput. Geotech., 123, 103597. https://doi.org/10.1016/j.compgeo.2020.103597.
  10. Anderson, D. and McNeill, G. (1992), "Artificial neural networks technology", Kaman Sci. Corporat., 258 (6), 1-83.
  11. Asadi Nalivan, O., Mousavi Tayebi, S.A., Mehrabi, M., Ghasemieh, H. and Scaioni, M. (2022), "A hybrid intelligent model for spatial analysis of groundwater potential around Urmia Lake, Iran", Stochast. Environ. Res. Risk Assessment, 1-18.
  12. Atmaca, B., Dede, T. and Grzywinski, M. (2020), "Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. http://dx.doi.org/10.12989/scs.2020.34.6.853.
  13. Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of levy flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
  14. Chen, W., Chen, X., Peng, J., Panahi, M. and Lee, S. (2020), "Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer", Geosci. Front., https://doi.org/10.1016/j.gsf.2020.07.012.
  15. Dai, Z.L., Xie, J.W. and Jiang, M.T. (2023), "A coupled peridynamics-smoothed particle hydrodynamics model for fracture analysis of fluid-structure interactions", Ocean Eng., 279, 10.1016/j.oceaneng.2023.114582.
  16. Dang, P.F., Cui, J., Liu Q.F. and Li, Y.D. (2023), "Influence of source uncertainty on stochastic ground motion simulation: a case study of the 2022 Mw 6.6 Luding, China, earthquake", Stochast. Environ. Res. Risk Assessment, 10.1007/s00477-023-02427-y.
  17. Deb, T. and Pal, S.K. (2020), "A comparative analysis on pull-out resistance and non-linear slip surfaces of single belled anchors in different layered sand deposits", Ocean Eng., 202, 107157. https://doi.org/10.1016/j.oceaneng.2020.107157.
  18. Ding, C.X., Liang, X.T., Yang, R.S., Zhang, Z.X., Guo, X., Feng, C., Zhu, X.G. and Xie, Q.M. (2023)m "A study of crack propagation during blasting under high in-situ stress conditions based on an improved CDEM method", Mech. Adv. Mater. Struct., 10.1080/15376494.2023.2208112.
  19. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
  20. Fateh, A.M.A., Eslami, A. and Fahimifar, A. (2017), "Direct CPT and CPTu methods for determining bearing capacity of helical piles", Marine Georesour. Geotechnol., 35(2), 193-207. https://doi.org/10.1080/1064119X.2015.1133741.
  21. Fayez, A., El Naggar, M., Cerato, A. and Elgamal, A. (2022), "Seismic response of helical pile groups from shake table experiments", Soil Dyn. Earthq. Eng., 152, 107008.
  22. Fu, Q., Gu, M.X., Yuan, J. and Lin, Y.F. (2022), "Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway", Buildings, 12(11), https://doi.org/10.3390/buildings12111982.
  23. Gao, W. and Chen, D. (2019), "Prediction model of service life for tunnel structures in carbonation environments by genetic programming", Geomech. Eng., 18(4), 373-389. https://doi.org/10.12989/gae.2019.18.4.373.
  24. Ge, L., Xian, Y., Wang, Z., Gao, B., Chi, F. and Sun, K. (2020), "A GWO-GRNN based model for short-term load forecasting of regional distribution network", CSEE J. Power Energy Syst., https://doi.org/10.17775/CSEEJPES.2020.00390.
  25. Grzywinski, M., Dede, T. and Ozdemir, Y.I. (2019), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047.
  26. Gu, M.X., Cai, X.C., Fu, Q., Li, H.B., Wang, X. and Mao, B.B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), https://doi.org/10.3390/buildings12111988.
  27. Hong, Y., Yao, M.H. and Wang, L.Z. (2023), "A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling", Comput. Geotech., 157, https://doi.org/10.1016/j.compgeo.2023.105301.
  28. Hornik, K., Stinchcombe, M. and White H (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  29. Hu, Y.H. and Hwang, J.N. (2002), Handbook of neural network signal processing. Acoustical Society of America. https://doi.org/10.1121/1.1480419.
  30. Huang, H., Guo, M.X., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021a), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 10.1016/j.jobe.2021.102266
  31. Huang H, Huang M, Zhang W, Guo MX, Liu BQ (2022a) "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column". Structure and Infrastructure Engineering 18 (2), 249-265. 10.1080/15732479.2020.1841245
  32. Huang H, Huang M, Zhang W, Yang SL (2021b) "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases". Structure and Infrastructure Engineering 17 (9), 1210-1227. 10.1080/15732479.2020.1801768
  33. Huang H, Li M, Yuan YJ, Bai H (2022b) "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges". Journal of Building Engineering 62 10.1016/j.jobe.2022.105386
  34. Huang S, Huang MM, Lyu YJ (2021c) "Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method". Engineering Applications of Computational Fluid Mechanics 15 (1), 1113-1133. 10.1080/19942060.2021.1939790
  35. Huang S, Lyu YJ, Sha HJ, Xiu LW (2021d) "Seismic performance assessment of unsaturated soil slope in different groundwater levels". Landslides 18 (8), 2813-2833. 10.1007/s10346-021-01674-w
  36. Ikram RMA, Dehrashid AA, Zhang B, Chen Z, Le BN, Moayedi H (2023a) "A novel swarm intelligence: cuckoo optimization algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment". Stochastic Environmental Research and Risk Assessment 37 (5), 1717-1743. https://doi.org/10.1007/s00477-022-02361-5
  37. Ikram RMA, Hazarika BB, Gupta D, Heddam S, Kisi O (2023b) "Streamflow prediction in mountainous region using new machine learning and data preprocessing methods: a case study". Neural Comput. Appl., 35(12), 9053-9070. https://doi.org/10.1007/s00521-022-08163-8.
  38. Jang, J.S. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
  39. Jia, S.D., Dai, Z.X., Zhou, Z.C., Ling, H., Yang, Z.J., Qi, L.L., Wang, Z.H., Zhang, X.Y., Thanh, H.V. and Soltanian, M.R. (2023), "Upscaling dispersivity for conservative solute transport in naturally fractured media", Water Res., 235, https://doi.org/10.1016/j.watres.2023.119844.
  40. Jimenez-Martinez, M. (2020), "Manufacturing effects on fatigue strength", Eng. Fail. Anal., 108, 104339.
  41. Jun, S., Lee, H. and Park, B. (2020), "Experimental and numerical study for analyzing applicability of helical piles", J. Korean Soc. Haz. Mitigat., 20(3), 215-223. https://doi.org/10.9798/KOSHAM.2020.20.3.215.
  42. Kardani, N., Zhou, A., Nazem, M., Shen, S.L. (2020), "Estimation of bearing capacity of piles in cohesionless soil using optimized machine learning approaches", Geotech. Geolog. Eng., 38(2), 2271-2291. https://doi.org/10.1007/s10706-019-01085-8.
  43. Khorrami, R. and Derakhshani, A. (2019), "Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model", Geomech. Eng., 19(2). 127-139. https://doi.org/10.12989/gae.2019.19.2.127.
  44. Kurian, N.P. and Shah, S.J. (2009), "Studies on the behaviour of screw piles by the finite element method", Canadian Geotech. J., 46(6), 627-638. https://doi.org/10.1139/T09-008.
  45. Kwon, O., Lee, J., Kim, G., Kim, I. and Lee, J. (2019), "Investigation of pullout load capacity for helical anchors subjected to inclined loading conditions using coupled Eulerian-Lagrangian analyses", Comput. Geotech., 111, 66-75. https://doi.org/10.1016/j.compgeo.2019.03.007.
  46. Li, J.B., Chen, M.M. and Li, Z.Y. (2022), "Improved soil-structure interaction model considering time-lag effect", Computers and Geotechnics 148 10.1016/j.compgeo.2022.104835
  47. Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4.
  48. Liu, C., Cui, J., Zhang, Z.X., Liu, H., Huang, X. and Zhang, C.Q. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnell. Underg. Space Technol., 111, https://doi.org/10.1016/j.tust.2021.103857.
  49. Liu, C., Peng, Z.H., Cui, J., Huang, X.Y., Li, Y.D. and Chen, W.Y. (2023a), "Development of crack and damage in shield tunnel lining under seismic loading: Refined 3D finite element modeling and analyses", Thin-Wall. Struct., 185, https://doi.org/10.1016/j.tws.2023.110647.
  50. Liu, H., Yue, Y.P., Liu, C., Spencer, B.F. and Cui, J. (2023b), "Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model", Tunnell. Underg. Space Technol., 134, https://doi.org/10.1016/j.tust.2022.104861.
  51. Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4.
  52. Liu, Y., Li, J.B. and Lin, G. (2023c), "Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites", Eng. Struct., 289, 16. https://doi.org/10.1016/j.engstruct.2023.116247.
  53. Livneh, B. and El Naggar, M.H. (2008), "Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading", Canadian Geotech. J., 45(8), 1142-1155. https://doi.org/10.1139/T08-044
  54. Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  55. Luat, N.V., Shin, J. and Lee, K. (2020b), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01115-7.
  56. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bulletin Mathem. Biophy. 5(4), 115-133. https://doi.org/10.1007/BF02478259.
  57. Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-020-09327-2
  58. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques", Sensors, 20(6), 1723.
  59. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867.
  60. Moayedi, H., Mehrabi, M., Kalantar, B., Mu'azu, M.A., Rashid, A.S.A. and Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial hazard assessment of seismic-induced landslide", Geomatic. Nat. Haz. Risk. 10. https://doi.org/10.1080/19475705.2019.1650126
  61. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A., Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
  62. Mosallanezhad, M. and Moayedi, H. (2017), "Developing hybrid artificial neural network model for predicting uplift resistance of screw piles", Arab. J. Geosci., 10(22), 479. https://doi.org/10.1007/s12517-017-3285-5.
  63. Muc, A. (2020), "Fuzzy approach in modeling static and fatigue strength of composite materials and structures", Neurocomput., 393, 156-164. https://doi.org/10.1016/j.neucom.2018.12.094
  64. Na, K., Lee, D., Lee, H., Jung, K. and Choi, H. (2016), Harmony Search Algorithm. 329-340. https://doi.org/10.1007/978-3-662-47926-1_32.
  65. Nazir, R., Chuan, H.S., Niroumand, H. and Kassim, K.A. (2014), "Performance of single vertical helical anchor embedded in dry sand", Measurement, 49, 42-51. https://doi.org/10.1016/j.measurement.2013.11.031.
  66. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H., Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomatic. Nat. Haz. Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782.
  67. Nicholson, S.R., Kober, L.R., Atefrad, P., Mwesigye, A. and Dworkin, S.B. (2021), "The influence of geometry on the performance of a helical steel pile as a geo-exchange system", Renew. Energy, 172, 714-727. https://doi.org/10.1016/j.renene.2021.03.067
  68. Polishchuk, A. and Maksimov, F. (2017), "Numerical analysis of helical pile-soil interaction under compressive loads", IOP Conference Series: Materials Science and Engineering 012099.
  69. Prasad, Y. and Rao, S.N. (1994), "Pullout behaviour of model pile and helical pile anchors subjected to lateral cyclic loading", Canadian Geotech. J., 31(1), 110-119. https://doi.org/10.1139/t94-012
  70. Sakr, M. (2009), "Performance of helical piles in oil sand", Canadian Geotech. J., 46(9), 1046-1061. https://doi.org/10.1139/T09-044.
  71. Serban, A. (2017), "Failure estimation of the composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.
  72. Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
  73. Shahin, M.A. (2016), "State-of-the-art review of some artificial intelligence applications in pile foundations", Geosci. Front., 7(1), 33-44. https://doi.org/10.1016/j.gsf.2014.10.002.
  74. Shaik, S., Krishna, K.S.R., Abbas, M., Ahmed, M. and Mavaluru, D. (2019), "Applying several soft computing techniques for prediction of bearing capacity of driven piles", Eng. Comput., 35(4), 1463-1474. https://doi.org/10.1007/s00366-018-0674-7.
  75. Shi, T., Liu, Y.M., Hu, Z.J., Cen, M.Q., Zeng, C., Xu, J.H., Zhao, Z.F. (2022), "Deformation performance and fracture toughness of carbon nanofiber-modified cement-based materials", Aci. Mater. J., 119(5), 118-127. https://doi.org/10.14359/51735976.
  76. Singh, T., Pal, M. and Arora, V. (2019), "Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree", Front. Struct. Civil Eng., 13(3), 674-685. https://doi.org/10.1007/s11709-018-0505-3.
  77. Spagnoli, G. (2017), "A CPT-based model to predict the installation torque of helical piles in sand", Marine Georesourc. Geotechnol., 35(4), 578-585. https://doi.org/10.1080/1064119X.2016.1213337.
  78. Tien Bui, D., Moayedi, H., Abdullahi, M., Rashid, S.A. and Nguyen, H. (2019), "Prediction of pullout behavior of belled piles through various machine learning modelling techniques", Sensors, 19(17), 3678. https://doi.org/10.3390/s19173678.
  79. Wang, B., Moayedi, H., Nguyen, H., Foong, L.K. and Rashid, A.S.A. (2019), "Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles", Eng. Comput., 1-10. https://doi.org/10.1007/s00366-019-00764-7.
  80. Wang, S., Jiangm, Y., Xu, M., Li, Y. and Li, Z. (2020), "Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm", Steel Compos. Struct., 36(1), 31-45. http://dx.doi.org/10.12989/scs.2020.36.1.031.
  81. Wang, W.C., Xu, D.M, Chau, K.W. and Chen, S. (2013), "Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD", J. Hydroinform., 15(4), 1377-1390. https://doi.org/10.2166/hydro.2013.134.
  82. White, H. (1992), Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishers, Inc.
  83. Wu, M.T., Ba, Z.N. and Liang, J.W. (2022a), "A procedure for 3D simulation of seismic wave propagation considering source-path-site effects: Theory, verification and application", Earthq. Eng. Struct. Dyn., 51(12), 2925-2955. https://doi.org/10.1002/eqe.3708.
  84. Wu, Z.P., Xu, J., Li, Y.F. and Wang, S.H. (2022b), "Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil", Int. J. Geomech., 22(7), https://doi.org/10.1061/(asce)gm.1943-5622.0002415.
  85. Xiao, X.H., Zhang, Q., Zheng, J.X. and Li, Z.C. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, https://doi.org/10.1016/j.engstruct.2023.115780.
  86. Xie, H., Li, G., Zhao, X. and Li, F. (2020), "Prediction of limb joint angles based on multi-source signals by GS-GRNN for exoskeleton wearer", Sensors, 20(4), 1104. https://doi.org/10.3390/s20041104.
  87. Xu, F., Foong, L.K. and Lyu, Z. (2020), "A novel search scheme based on the social behavior of crow flock for feed-forward learning improvement in predicting the soil compression coefficient", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01119-3.
  88. Xu, J., Lan, W., Ren, C., Zhou, X.G., Wang, S.H. and Yuan, J. (2021), "Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization", Cold Regions Sci. Technol., 189, https://doi.org/10.1016/j.coldregions.2021.103335.
  89. Xue, X. (2019), "Application of a support vector machine for prediction of piping and internal stability of soils", Geomech. Eng., 18(5), 493-502. https://doi.org/10.12989/gae.2019.18.5.493.
  90. Yalcin, Y., Orhon, M. and Pekcan, O. (2019), "An automated approach for the design of mechanically stabilized earth walls incorporating metaheuristic optimization algorithms", Appl. Soft Comput., 74, 547-566. https://doi.org/10.1016/j.asoc.2018.09.039.
  91. Yang, S.T., Li, X.Y., Yu, T.L., Wang, J., Fang, H., Nie, F., He, B., Zhao, L., Lu, W.M., Yan, S.S., Nogaret, A., Liu, G., Zheng, L.M. (2022), "High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry", Adv. Funct. Mater., 32(35), https://doi.org/10.1002/adfm.202202366.
  92. Zhan, C.J., Dai, Z.X., Soltanian, M.R. and de Barros, F.P.J. (2022), "Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework", Water Resour. Res., 58(11), https://doi.org/10.1029/2022wr033241.
  93. Zhan, C.J., Dai, Z.X., Yang, Z.J., Zhang, X.Y., Ma, Z.Q., Thanh, H.V. and Soltanian, M.R. (2023), "Subsurface sedimentary structure identification using deep learning: A review", Earth-Sci. Rev., 239, https://doi.org/10.1016/j.earscirev.2023.104370.
  94. Zhang, C.Y., Yin, Y.P., Yan, H., Zhu, S.N., Li, B., Hou, X.F. and Yang, Y.T. (2023), "Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings", Landslides, 20(3), 559-577. https://doi.org/10.1007/s10346-022-01994-5.
  95. Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. http://dx.doi.org/10.12989/scs.2021.39.1.081.