• Title/Summary/Keyword: Manure and compost

Search Result 423, Processing Time 0.034 seconds

Investigation of the Utilization of Organic Materials and the Chemical Properties of Soil in the Organic Farms in Korea (국내 유기농재배지 유기물 시용실태 및 토양의 화학적 특성)

  • Lee Yong-Hoan;Lee Sang-Guei;Kim Sung-Hoan;Shin Jae-Hoon;Choi Doo-Hoi;Lee Yun-Jeong;Kim Han-Myeng
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.1
    • /
    • pp.55-67
    • /
    • 2006
  • A survey of 31 organic farmers were conducted to investigate the actual conditions of organic matter application. The amounts of organic matter application in the fields were higher in order of fruit, vegetable and rice farm. The average was 50 ton/ha in vegetable farms. In the green vegetable farms saw dust and animal manure were mainly utilized to make compost. Rice straw, wood chip, and forest bushes were also used for composting. In the fruit vegetable farms materials relatively lower in nitrogen content such as rice straw and cattle manure were used in vegetative period and materials higher in nitrogen content such as oil cake and wild grass were used in reproductive phase. Nutrient balance investigated in the farm in Icheon region who produce lettuce, angelica, and kale continuously in one cropping year indicated surplus in three major nutrients. Nitrogen and phosphorous were in excess by 29 and 10 kg respectively in the organic rice farm in yang-pyoung region. While soil chemical properties in the organic farms are within the adequate range in open field, it is much higher than the limits in the greenhouse soils. Overall application of organic matter is in an oversupply state. This results suggested that the organic matter management should be based on the soil conditions for sustainable cultivation. Chemical composition of organic matters and soil test reports should be considered prior to the application of organic matter.

  • PDF

Effects of Application of Fermented Swine Manure with Additional Nitrogen Fertilizer on Productivity of Corn and Leaching of Nitrogen and Phosphorous in Corn Cultivation Soil (돈분발효 퇴액비 시용과 첨가적인 질소비료 시용이 옥수수의 생산성과 질소 및 인의 용탈에 미치는 영향)

  • Choi, Ki-Choon;Jo, Nam-Chul;Jung, Min-Woong;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • This study was conducted to investigate the effects of swine manure (SM) application with additional nitrogen (N) fertilizer on productivity of corn and environmental pollution in com cultivation soil. The experiment was conformed in lysimeter which was constructed with 30 cm diameter, and 100 cm height. Swine manures used in this study were the compost of swine manure fermented with sawdust (SMFWS) and soft rice hulls treated with high temperature and high pressure (SRH), and swine slurry (SS). The application rates of the additional N, as urea, with swine manure were 50 and 100 kgN/ha on each plot. This study was arranged in completely randomized design with three replication. DM yields in SM treatments with mineral N were increased significantly compared to those in SM treatment without mineral N (zero-mineral N) (P<0.05) and increased as the rate of mineral N application increased (P<0.05). DM yields in SMFWS and SS treatments with mineral 100 kgN/ha showed trends similar to those of chemical fertilizer (control) but higher than those of 50 kg N/ha. DM yields tended to be higher in SMFWS and SS treatments than in SRH treatment. Total N contents in SMFWS, SRH and SS treatments with mineral N were increased, compared with SM treatment without mineral N. N contents in SM treatments with mineral N were lower than those of chemical fertilizer treatment, but N content of chemical fertilizer treatment showed trends similar to that of SS treatments with mineral 100 kgN/ha. $NO_3$-N concentration in SM treatments with mineral N were increased significantly, compared to those in SM treatment without mineral N and in chemical fertilizer (P<0.05). $NH_4$-N concentrations in SMFWS and SS treatments with mineral 100 kgN/ha showed trends similar to those of chemical fertilizer, but higher than those of 50 kg N/ha. $PO_4$-P concentration in SM treatments with mineral N were increased significantly, compared to those in SM treatment without mineral N (P<0.05). $PO_4$-P concentration in chemical fertilizer treatment showed trends similar to that of SS treatments with mineral 100 kgN/ha. The concentrations of $NO_3$-N $NH_4$-N and $PO_4$-P increased as the rate of mineral N application increased (P<0.05). The concentrations of $NO_3$-N $NH_4$-N and $PO_4$-P were highly elevated in the concentrated rainy season in the early stage among experimental period. The maximum $NO_3$-N $NH_4$-N and $PO_4$-P concentrations in the leaching water were 3.46 mg/L, 1.11 mg/L and 0.14 mg/L, respectively.

Distribution of Foodborne Pathogens from Garlic Chives and Its Production Environments in the Southern Part of Korea (남부지방 부추와 재배환경의 식품매개병원균의 분포)

  • Jung, Jieun;Oh, Kwang Kyo;Seo, Seung-Mi;Yang, SuIn;Jung, Kyu-Seok;Roh, Eunjung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.477-488
    • /
    • 2020
  • Recently, foodborne illness outbreaks linked to fresh produce are being increasingly reported in the United States, the EU, and Korea as well. Some of this increase may be due to improved surveillance, increase in consumption, change in consumers' habits, and complex distribution systems. Garlic chive is a green, fresh-cut vegetable consumed year-round as a nutrition-rich herb in Korea. It is also prone to contamination with foodborne pathogens during pre-harvest, as amendment with high amounts of livestock manure or compost to soil is required in its cultivation. Our aim in this study was to evaluate microbial contamination of garlic chives, garlic chives cultivation soil, compost, and irrigation water in the southern part of Korea. Samples were collected in A, B, and C regions in 2019 and 2020, and 69, 72, 27, and 40 of garlic chives, soil, compost, and irrigated water, respectively, were analyzed for the presence of sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), Bacillus cereus, Staphylococcus aureus, pathogenic E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. In A, B, and C regions, levels of total aerobic bacteria, coliform, B. cereus, and S. aureus on all samples were between 1.14 and 8.83 log CFU/g, 0.43 and 5.01 log CFU/g, 0.41 and 5.55 log CFU/g, and 1.81 and 6.27 log CFU/g, respectively. B. cereus isolated from garlic chives and environmental samples showed β-hemolysis activity. Incidence of S. aureus in garlic chive and its production environments in 2020 was different from 2019. In this study, B. cereus and S. aureus were the only pathogenic microorganisms detected in all samples. As a result, this work suggests that continuous monitoring in the production and pre-harvest environment is required to improve hthe hygiene and safety of garlic chive.

Study on the Feasibility of Utilization of Pine Cone Byproduct as a Natural Deodorizing Agent for Composting Process (퇴비화 시설용 천연 악취저감제로의 잣송이 부산물의 활용 가능성에 관한 연구)

  • Chun, H.S.;Kwag, J.YH.;Ga, C.H.;Park, J.I.;Kim, C.H.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.129-138
    • /
    • 2007
  • A natural deodorizing agent (NDA) was made using pine cone byproduct, and its effects on malodor emission and composting were analyzed in this study. NDA was manufactured by mixing pine cone byproduct with three species of microorganisms and water containing mineral nutrients and molasses, and then by incubating for 48 hours at $30^{\circ}C$. Lab scale experiments were done with three treatment groups, T1 (control, sawdust treatment), T2 (microorganisms and sawdust treatment group), and T3 (NDA and sawdust treatment group). During composting, temperatures reached over $55^{\circ}C$, a minimum temperature for the inactivation of pathogenic microorganisms. No differences were found in physicochemical composition of compost among treatments. However, it was observed that over usage of NDA could obstruct temperature increase, since the biodegradation rate of organic matter of NDA was relatively low, Nitrogen loss due to ammonia gas emission, which normally happens during composting, was reduced by using NDA, and hence the nitrogen level of final compost was higher in T3 than in others. During experiment, it was found that ammonia gas emission was entirely lasted through compositing duration, but the $CH_3SH$ and $H_2S$ gases were produced only at early stage of composting. The ammonia concentration trapped in $H_2SO_4$ solution during 31 days of composting in T1, T2 and T3 was 12,660mg/L, 11,598mg/L and 7,367mg/L, respectively, showing distinguishable reduction of ammonia gas emission in T3. The emissions of $CH_3SH$ and $H_2S$ gases were also remarkably reduced in T3. Based on these obtained results, usage of the deodorizing agent made with pine cone byproduct could reduce the emission of malodor during composting, without any deterioration of compost quality.

  • PDF

Studies on the productivity of mulberry field in Korea. (우리나라 상전의 생산성에 관한 조사연구)

  • 김문협;임수호
    • Journal of Sericultural and Entomological Science
    • /
    • no.11
    • /
    • pp.1-14
    • /
    • 1970
  • The following results were obtained by surveying the productivity of mulberry fields in Korea. 1. The productivity of mulberry field per 10a in which cocoon can be yield belongs to the range of 9.8∼105kg, and among them the productivity of 20 to 60kg was chiefly distributed. And their average was 50.2kg. 2. In general, the larger the mulberry field in scale per a person is, the lower the productivity of it is, but about 6.6 ares per a person was estimated to be economic scale for high productivity. 3. As far as the texture of soil is concerned, sandy-loam and loam contained a capacity of higher productivity while others like clay and sand that of lower productivity, And the depth of surface soil must be at least 50cm, although 70cm's depth of surface sail could bring about high productivity. 4. Fertilization of 900kg's compost on planting and 1,200kg's that after planting could enhance the productivity, because the use of compost have a positive relation to the productivity. 5. The greater the number of farmer's domestic animals is as a source of organic matter the higher the productivity is. 6. In the case of fertilization of 1,200kg compost, the amount of 20kg's nitrogen per 10 ares as chemical manure was best for high productivity. However, fertilization of 14.7kg's nitrogen as average amount of that, which is far below the standard amount, had been a factor to reduce the productivity of mulberry field. 7. In pruning the low-cut form resulted in high productivity, but as their shape become taller due to the lack of techniques, they were turned out to be non head pruning, thus to produce poor harvest of leaves. 8. The pure mulberry fields showed better productivity than others such as wide and narrow ridge planting and inter-crop planting. 9. As for the degree of planting density, at least 800 trees per 10 ares should be planted to increase the productivity, although the planting of 713 trees per 10 ares could be possible in case of the low stemmed pruning. 10. The hole and tranch in planting must be digged as wider and dipper as possible far the better growth of mulberry tree. 11. On the whole, varieties like NOsang and Y oung-cheun choowoo had a tendency of lower productivity.

  • PDF

Fertilizing Effects of Swine Compost Fermented with Sawdust on Mixed Pastures (혼파초지에 대한 톱밥발효돈분의 시용효과)

  • Shin, J. Soon;Cho, Young-Mu;Lee, Hyo-Ho;Yoon, Sea-Hung;Park, Geun-Je;Choi, Ki-Chun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • Experiment was carried out to find the fertilizing effects of 8 different application rates of swine compost fermented with sawdust(SCS) including Chemical fertilizer(CF) on forage yield and soil chemical characteristics of mixed pastures sown in Sep. 1993 at National Livestock Research Institute, RDA., in Suwon during low years. It was arranged in a randomized complete block design with three replicates. Dry matter yield were shown at similar among treatments except Control and $50\%$ SCS of standard amount plot. In botanical composition, the legume and weeds percentages of each treatment were increased as advancing year. The final year's legume percentage were high in line with SCS fertilizing plots($39\%{\sim}43\%$), SCS + CF plots($30\%{\sim}41\%$) and CF plot($32\%$). In productions of TDN, NE and crude protein yield, SCS or SCS($75\%$) + CF($25\%$) were nearly same comparing those of CF, respectively. Phosphate, potassium, magnesium contents and K/(Ca + Mg) except calcium contents of those SCS fertilizing plots in plant were generally high with comparing CF. Those contents were proportional according to the fertilizing amount These result indicate the possibility to substitute chemical fertilizer for SCS($75\%$, 25ton/ha) + CF, $25\%$) as manure-N 210 kg/ha, but might be considered accumulation phosphate in the soil.

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF

Effect of Aeration Rates on Emissions of Oxygen and Sulfur compound gases during Composting of Dairy Manure (우분(牛糞) 퇴비화시(堆肥花時) 공기주입률(空氣注入率)이 산소 및 황화합물 가스 배출(排出)에 미치는 영향(影響))

  • Kang, Hang-Won;Zhang, Ruihong;Rhee, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.472-481
    • /
    • 2000
  • This experiment used the enclosed bench-scale reactors was conducted to find out optimal aeration rate for reducing the emission of odors and producing the good-quality compost with the mixture of dairy manure and rice straw. The reactors with gas sampler were aerated at four different rates of 0.09, 0.18, 0.90 and $1.79l\;min^{-1}kg^{-1}$dry solids for 574 hours. The oxygen content within composting pile instantly decreased after aeration. Oxygen limitation(below 15%) in the treatments of $0.90l\;min^{-1}kg^{-1}$ and less was exponentially negative relationship with aeration rates and in the range of 35 to 300 hours after aeration. However, the treatment of $1.79l\;min^{-1}kg^{-1}$ didn't show the oxygen limitation. The oxygen consumption rate and the cumulative amount of oxygen consumed by different aeration rates was ranged in $0.80{\sim}1.57O_2g\;h^{-1}\;kg^{-1}VS^{-1}$, $460{\sim}900O_2g\;kg^{-1}VS^{-1}$, respectively, and they were high in the order of 0.90, 1.79, 0.18, $0.09l\;min^{-1}kg^{-1}$. The maximum oxygen consumption rate was estimated in the range of $1.2{\sim}1.3lmin^{-1}kg^{-1}$. The emission concentrations of sulfur compounds such as hydrogen sulfide, sulfur dioxide and methylmercaptan were remarkably high in the initial composting time. Then they were rapidly decreased with the passing of composting time and clearly with increasing aeration rates. Their average concentrations were in the range of 0.03~2.18, 0~0.50, $0.07{\sim}3.38mg\;kg^{-1}$, respectively and high in the order of methylmercaptan, hydrogen sulfide, and sulfur dioxide. Concentrations of sulfur compounds emitted from composting showed exponentially negative relationship at 1% statistically with the oxygen concentration. It was estimated that hydrogen sulfide and methylmercaptan suddenly increased in the level of 5% oxygen concentration and below, that they were little emitted in 15% and over but sulfur dioxide was emitted in the level of 20% oxygen.

  • PDF

Changes of Physico-chemical Characteristic on Swine Manure Using Different Suction Strength in Composting System (돈분 퇴비화 시 공기 흡입 강도에 따른 이화학적 특성변화)

  • Lee, Dong-Jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Kawg, Jung-Hoon;Ravindran, B.;Lee, Ji-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • The aim of this experiment was to investigate the effect of air suction rate (SR) during the composting process of swine manure mixed with sawdust used as a bulking agent. In the 25 L composting reactors, the suction rate (SR) was at four different treatment levels (100%, 200%, 300%, 400%), and were fixed on the based on constant aeration rate into the composting mixtures. The temperature reached to thermophilic phase within 2 days and it was maintained up to the $5^{th}$ day of the composting process in all reactors and then gradually decreased to room temperature at the end of the composting process. The moisture content (MC, %) of the initial mixtures was 64.27%, and it was reduced to 38.4, 33.08, 14.59 and 11.93 in the different suction rate of 100%, 200%, 300%, 400%, respectively in the end process. During the composting, the level of pH was increased from 6.83 to 8.67 and it gradually decreased to 7.56 in 100% and 200%(SR). At the same time, the pH values were reduced only up to 8.19 at 300%, and 8.08 at 400%(SR), showing that suction strengths of 100% and 200% were the better option for composting than those of 300% and 400%. The total Kjeldahl nitrogen (TKN) of initial composts mixtures was 2.3% and were changed in 3.3, 3.1, 2.5, and 2.3% at the end of the composting period from the 100%-400% (SR) variations respectively. These results also indicated that 100% and 200% (SR) were more affected by the dry mass loss as $CO_2$ and water evaporation. The initial value of C/N ratio was 25.17 and were significantly reduced to 11.88, 11.97, 14.31, and 14.72 at the end of the experiment, respectively from the 100%-400% (SR) variations. These results suggest that the suction rate (SR) of 100% and 200% relative to constant air supply would be the optimal conditions to produce high-quality compost.

Effect of Aeration Rates on Ammonia Emissions during Composting of Livestock Manure (축분(畜糞) 퇴비화시(堆肥化時) 공기주입율(空氣注入率)이 암모니아 배출(排出)에 미치는 영향(影響))

  • Kang, Hong-Won;Rhee, In-Koo;Park, Hyang-Mee;Ko, Jee-Yeon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.304-311
    • /
    • 1999
  • This experiment was conducted to find out the optimum condition of aeration rates for removal of malodor and to improve the compost quality. The aspect of ammonia emission and amounts of volatilization were investigated in the enclosed composting reactor of 242 liters piled with mixed materials of dairy manure and rice straw, which adjusted to 65% of initial moisture content and controlled by four different aeration rates. Mature temperature increased suddenly in initial composting time and decreased with Increasing aeration rates. The treatment of $1.79l\;min^{-1}kg\;dry-solids^{-1}$ results in overcooling and rapid drying of composting materials because of too much aeration. The average concentration of ammonia emitted from composting for 24 days was the range of 25.3 to $239.8mg\;l^{-1}$ and was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.90. 0.18 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. The range of maximum concentration by different aeration rates was $335{\sim}2279mg\;l^{-1}$ and it wan highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Relationship between the ammonia concentration emitted and temperature matured under different aeration rates showed an exponential positive correlation with 1% significance and had a trend of clear increase in ammonia concentration with increasing temperature over $50^{\circ}C$. Most of ammonia volatilized within plays after composting. The volatilization rate of ammonia ranged from 0.056 to 0.453 per dry solids of materials and it was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Amounts of ammonia volatilized under composting condition of this experiment was estimated to be highest in the aeration range of 0.9 to $1.0l\;min^{-1}kg\;dry-solids^{-1}$.

  • PDF