• Title/Summary/Keyword: Manufacturing performance

Search Result 4,435, Processing Time 0.033 seconds

The study on the selection of operating conditions of the precipitation heating system for observation of snowfall in winter (겨울철 강설 관측을 위한 강수량계 가열 시스템 운영 조건 선정에 관한 연구)

  • Kim, Byeongtaek;Hwang, Sungeun;Lee, Youngtae;Kim, Minhoo;Hwang, Hyunjun;In, Sora;Yun, Jinah;Kim, Kihoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.461-470
    • /
    • 2023
  • The purpose of this research is to derive the optimal temperature, location, and heating control system for a tipping bucket rain gauge heating system used for observing snowfall during winter. We conducted indoor and outdoor experiments by manufacturing a tipping bucket rain gauge that can be variably controlled for heating at the funnel, exterior, and interior, and indoor and outdoor. The indoor experiments involved using a temperature and humidity chamber to compare the performance and derive the appropriate temperature of the precipitation gauge heating system. Subsequently, the outdoor experiments were carried out at the Cloud Physics Observation Center located in Daeguallyeong, heavy snowfall region, to validate the findings. The analysis result was derived that the heating temperature of the funnel should be set at the 10 to 30℃, while the internal heating temperature should be 70℃. Furthermore, the optimal locations for the heating devices, which aim to minimize measurement delay, were identified as the exterior of the rain gauge, the rim of the funnel, and the vertical surface of the funnel. Our result shows that used as the basis for the operating conditions of precipitation gauge heating systems for solid precipitation measurement in winter.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

A Study on the Performance of Industrial Accident Prevention in Safety Management Institution -Focus on Comparison with Self-Managed Safety Workplace- (안전관리전문기관의 산업재해예방 성과에 관한 연구 -자체수행 안전관리사업장과 비교 중심-)

  • Seung-Kuk Lee;Seok-Jin Song;In-Sung Kim;Gyu-Sun Cho
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.61-67
    • /
    • 2023
  • This study compared, analyzed, and verified the accident rate and accident fatality rate (per 10,000 workers) of workplaces that perform safety management on behalf of a safety management institutions designated and registered in accordance with the OSHAct and workplaces that perform safety management. According to the research results, the significance was confirmed that the group with a low accident rate was the workplaces that self-appointed safety managers, workplaces with self-appointed safety managers in size with less than 300 employees, and workplaces in the industrial accident insurance industry in the manufacturing and transportation, warehouse, and telecommunications industries. The groups with a low accidental death rate were workplaces with less than 300 employees, workplaces where safety management was performed on behalf of safety management institutions, and workplaces with selfappointment for other medical businesses. In this study, it was confirmed that the accident rate in the safety management agency's workplaces was higher than that of its own appointed workplaces, and that there were some differences in the accident fatality rate depending on the size and industry. Therefore, since the current safety management agency system cannot ensure the effect of preventing accidental deaths, there is a need for comprehensive improvement of the agency system and improvement of the system to strengthen expertise in preventing industrial accidents.

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

The Relationship Between Entrepreneurial Competency and Entrepreneurial Intention of SME Workers: Focusing on the Mediating Effect of Start-Up Efficacy and Start-Up Mentor (중소기업 종사자의 창업역량과 창업의도 간의 영향 관계: 창업효능감과 창업멘토링의 매개효과 중심으로)

  • Oun Ju Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.201-214
    • /
    • 2023
  • This study attempted to analyze the impact of individual entrepreneurial capabilities on entrepreneurial intention targeting small and medium-sized business employees, and sought to confirm the mediating effect of entrepreneurial efficacy and entrepreneurial mentoring between entrepreneurial capabilities and entrepreneurial intention. The sub-variables of entrepreneurship competency were analyzed separately into creativity, problem solving, communication, and marketing. 368 questionnaires collected from employees at small and medium-sized manufacturing companies located across the country were used for empirical analysis. A parallel dual mediation model with no causal relationship between parameters was used for empirical analysis using SPSS v26.0 and PROCESS macro v4.2. As a result of the analysis, first, among the start-up competencies, creativity, communication, and marketing were confirmed to have a significant positive (+) effect on start-up efficacy. Second, among the start-up competencies, creativity, communication, and marketing were tested to have a significant positive influence on start-up mentoring. Third, both startup efficacy and startup mentoring were found to have a significant positive influence on startup intention. Fourth, among start-up capabilities, creativity and marketing were confirmed to have a significant positive (+) effect on start-up intention. Fifth, startup efficacy and startup mentoring were found to have a mediating effect on startup intention except for problem solving among startup competencies. As a result, it was confirmed that in order to strengthen the intention to start a business among small and medium-sized business employees, start-up efficacy and start-up mentoring are important factors, and that marketing and creativity have an important influence among individual start-up capabilities, so education and prior preparation for these are necessary. As follow-up research, it will be necessary to apply multivariate models, analyze time series data, research considering external environmental factors, and test the difference between start-up capabilities and performance considering detailed population characteristics.

  • PDF

Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries (열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성)

  • Dong Ki Kim;Chaehun Lim;Seongjae Myeong;Naeun Ha;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.140-147
    • /
    • 2024
  • In order to increase the utilization of biomass, an electrochemical performance was considered after manufacturing a carbon anode material (SV-C) for a Setaria viridis-based lithium ion secondary battery through a heat treatment process. When the heat treatment temperature of the Setaria viridis is as low as 750 ℃, the capacitance (1003.3 mAh/g, at 0.1 C) is high due to the negative (-) charge of oxygen present on the surface attracting lithium, along with the low crystallinity and high specific surface area (126 m2/g), but the capacity retention rate is believed to be as low as 61.0% (at 500 cycles and 1 C). In addition, it was confirmed that when the heat treatment temperature increased to 1150 ℃, the carbon layer was condensed to be excellent in arrangement, and the structural defects were reduced, resulting in a significant reduction in the specific surface area (32 m2/g) of the pores. Furthermore, when the surface defects of the anode material are reduced and the crystallinity is increased, the capacity retention rate is as high as 89.7% (at 500 cycles and 1 C), but the degree of defects is small, the active point is reduced, and the specific capacity is considered to be very low at 471.7 mAh/g. In the scope of this study, it was found that in the case of the Setaria viridis-based carbon anode material manufactured according to the heat treatment temperature, the surface oxygen content and crystallinity have higher reliability on the electrochemical properties of the anode material than the specific surface area.

Experimental Study to Evaluate the Durability of 100 MPa Class Ultra-high Strength Centrifugal Molding Concrete (100MPa급 초고강도 원심성형 콘크리트의 내구성 평가를 위한 실험연구)

  • Jeong-Hoi Kim;Sung-Jin Kim;Doo-Sung Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.12-23
    • /
    • 2024
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. In order to investigate the durability of centrifugally formed PSC square beams to be used as the superstructure of the avalanch tunnel or ramen bridge, the durability performance of ultra-high-strength centrifugally formed concrete with a compressive strength of 100 MPa was evaluated in terms of deterioration and chemical resistance properties.Concrete durability tests, including chloride penetration resistance, accelerated carbonation, sulfate erosion resistance, freeze-thaw resistance, and scaling resistance, were performed on centrifugally formed square beam test specimens produced in 2022 and 2023. Considering the information verified in this study, the durability of centrifugally molded concrete, which has increased watertightness in the later manufacturing stage, was found to be superior to that of general concrete.

Analysis of RSET According to Exit Installation Standards for the Exterior of a Food Manufacturing Plant Building (식품공장 건축물 바깥쪽으로의 출구 설치기준에 따른 RSET 분석)

  • Park, Ha-Soung;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2024
  • In this study, we investigated whether the evacuation time according to the exit installation standards specified in the building code during a food factory fire is compatible with the evacuation time based on the performance-based design specified by the fire department, in order to determine if evacuation safety is ensured. We used the Pathfinder program to confirm the evacuation time, and experimented with three scenarios for exit installation standards towards the outside of the building: 60m, 80m, and 100m. The target building in the experiment corresponded to the building code's exit installation standard of 100m from each dwelling. The experimental results showed tt in the cases of 80m and 100m, ASET exceeded RSET, indicating tt evacuation safety was not ensured, while in the case of 60m, evacuation safety was maintained. Through this study, it was confirmed tt even when the exit installation standards towards the outside of the building are met, evacuation safety may not be guaranteed.

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.