DOI QR코드

DOI QR Code

The study on the selection of operating conditions of the precipitation heating system for observation of snowfall in winter

겨울철 강설 관측을 위한 강수량계 가열 시스템 운영 조건 선정에 관한 연구

  • Kim, Byeongtaek (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Hwang, Sungeun (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Youngtae (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Minhoo (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Hwang, Hyunjun (Observation Research Department, National Institute of Meteorological Sciences) ;
  • In, Sora (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Yun, Jinah (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Kihoon (Observation Research Department, National Institute of Meteorological Sciences)
  • Received : 2023.06.20
  • Accepted : 2023.07.18
  • Published : 2023.07.31

Abstract

The purpose of this research is to derive the optimal temperature, location, and heating control system for a tipping bucket rain gauge heating system used for observing snowfall during winter. We conducted indoor and outdoor experiments by manufacturing a tipping bucket rain gauge that can be variably controlled for heating at the funnel, exterior, and interior, and indoor and outdoor. The indoor experiments involved using a temperature and humidity chamber to compare the performance and derive the appropriate temperature of the precipitation gauge heating system. Subsequently, the outdoor experiments were carried out at the Cloud Physics Observation Center located in Daeguallyeong, heavy snowfall region, to validate the findings. The analysis result was derived that the heating temperature of the funnel should be set at the 10 to 30℃, while the internal heating temperature should be 70℃. Furthermore, the optimal locations for the heating devices, which aim to minimize measurement delay, were identified as the exterior of the rain gauge, the rim of the funnel, and the vertical surface of the funnel. Our result shows that used as the basis for the operating conditions of precipitation gauge heating systems for solid precipitation measurement in winter.

본 연구는 겨울철 적설 관측에 사용되는 전도형 강수량계 가열 시스템의 최적 온도, 위치, 제어 방식을 도출하기 위해 수행하였다. 수수구, 외부, 내부를 가변적으로 제어 가능한 전도형 강수량계를 제작하여 실내·외 실험을 수행하였다. 실내 실험은 강수량계 가열시스템의 성능비교와 적정온도를 도출하기 위해 항온항습챔버에서 수행되었다. 이후 다설지인 대관령에 위치한 구름물리선도센터에서 실외실험을 수행하여 실내실험 결과를 검증하였다. 분석 결과, 수수구의 가열 온도는 10~30℃, 내부 가열 온도는 70℃가 최적으로 확인되었다. 또한, 측정 지연을 최소화하기 위한 가열 장치의 최적 위치는 강수량계 외부, 수수구 테두리, 수수구 수직면으로 확인되었다. 본 연구 결과는 겨울철 고체 강수 측정을 위한 강수량계 가열 시스템의 운영 조건에 대한 기초자료로 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「표준기상관측 및 활용연구」(KMA2018-00221)의 지원으로 수행되었습니다.

References

  1. Barnett, T.P., Adam, J.C., and Lettenmaier, D.P. (2005). "Potential impacts of a warming climate on water availability in snow-dominated regions." Nature, Vol. 438, pp. 303-309. https://doi.org/10.1038/nature04141
  2. Bolinger, R.A., Brown, V.M., Fuhrmann, C.M., Gleason, K.L., Joyner, T.A., Keim, B.D., Lewis, A., Nielsen-Gammon, J.W., Stiles, C.J., Tollefson, W., Attard, H.E., and Bentley, A.M. (2022). "An assessment of the extremes and impacts of the February 2021 South-Central U.S. Arctic outbreak, and how climate services can help." Weather and Climate Extremes, Vol. 36, 100461.
  3. Brema Group S.p.A (BREMA) (2021). GB 902-data sheet, accessed 11 July 2023, .
  4. Conroy, G. (2023). What the science says about California's recordsetting snow, accessed 03 April 2023, .
  5. Das, R.K. and Prakash, N.R. (2011). "Design of an improvised tipping bucket rain gauge for measurement of rain and snow precipitation." International Journal of Instrumentation Technology, Vol. 1, No. 1, pp. 44-59. https://doi.org/10.1504/IJIT.2011.043597
  6. Grossi, G., Lendvai, A., Peretti, G., and Ranzi, R. (2017). "Snow precipitation measured by gauges: Systematic error estimation and data series correction in the Central Italian Alps." Water, Vol. 9, 461.
  7. Huang, X., Stevenson, S., and Hall, A.D. (2020). "Future warming and intensification of precipitation extremes: A "double whammy" leading to increasing flood risk in California." Geophysical Research Letters, Vol. 47, e2020GL088679.
  8. Karki, R. (2012). Intercomparision of snowfall measured by weighing and tipping bucket precipitation gauges at Jumla Airport, Nepal, accessed 15 February 2022, .
  9. Kawase, H., Yamazaki, T., Sugimoto, S. Sasai, T., Ito, R., Hamada, T., Kuribayashi, M., Fujita, M., Murata, A., Nosaka, M., and Sasaki, H. (2020). "Changes in extremely heavy and light snowcover winters due to global warming over high mountainous areas in central Japan." Progress in Earth and Planetary Science, Vol. 7, 10.
  10. Kim, B., In, S. and Kim, S. (2022). "The study on the selection of performance test conditions for indoor and outdoor experiments of snowfall in winter." Journal of Korea Water Resources Association, Vol. 55, No. 12, pp. 1149-1154.
  11. Kochendorfer, J., Earle, M.E., Hodyss, D., Reverdin, A., Roulet, Y., Nitu, R., Rasmussen, R., Landolt, S., Buisan, S., and Laine, T. (2020). "Undercatch adjustments for tipping-bucket gauge measurements of solid precipitation." Journal of Hydrometeorology, Vol. 21, No. 6, pp. 1193-1205. https://doi.org/10.1175/JHM-D-19-0256.1
  12. Korea Meteorological Administration (KMA) (2019). Guidelines for installation and operation of meteorological observatory, .
  13. Korea Meteorological Administration (KMA) (2023). Korea Meteorological Administration (KMA) research management system, accessed 11 July 2023, .
  14. Li, Q., Yang, T., Qi, Z., and Li, L. (2018). "Spatiotemporal variation of snowfall to precipitation ratio and its implication on water resources by a regional climate model over Xinjiang, China." Water, Vol. 10, 1463.
  15. Li, Y., Chen, Y., Wang, F., He, Y., and Li, Z. (2020). "Evaluation and projection of snowfall changes in High Mountain Asia based on NASA's NEX-GDDP high-resolution daily downs-caled dataset." Environmental Research Letters, Vol. 15, 104040.
  16. Li, Y., Li, J., Ping, F., Li, L. and Li, J. (2023). "Comparative study of bin and bulk microphysical schemes in simulating a heavy snowfall event that occurred in Beijing during the 2022 Winter Olympic Games." Frontiers in Earth Science, Vol. 11, 1128672.
  17. Ministry of the Interior and Safety (MOIS) (2023). 22.12.21-24 confirmed recovery plan for heavy snow, cold wavesm and srtong winds, accessed 12 January 2023,
  18. Nitu, R., and Wong, K. (2010). CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations. IOM Report- No. 102, World Meteorological Organization, Geneva, Swiss, p. 57.
  19. NOAA National Centers for Environmental Information (NCEI) (2021). U.S. billion-dollar weather and climate disasters, accessed 11 July 2023, .
  20. Patricola, C.M., Wehner, M.F., Bercos-Hickey, E., Maciel, F.V., May, C., Mak, M., Yip, O., Roche, A.M., and Leal, S. (2022). "Future changes in extreme precipitation over the San Francisco Bay Area: Dependence on atmospheric river and extratropical cyclone events." Weather and Climate Extremes, Vol. 36, 100440.
  21. Quante, L., Willner, S.N., Middelanis, R. and Levermann, A. (2021). "Regions of intensification of extreme snowfall under future warming." Scientific Reports, Vol. 11, 16621.
  22. Savina, M., Schappi, B., Molnar, P., Burlando, P., and Sevruk, B. (2012). "Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall." Atmospheric Research, Vol. 103, pp. 45-51. https://doi.org/10.1016/j.atmosres.2011.06.010
  23. Teledyne FLIR (FLIR) (2017). User's manual FLIR Exx series, accessed 11 July 2023,
  24. World Meteorological Organization (WMO) (2018a). Guide to instruments and methods of observation: Volume I: Measurement of meteorological variables. WMO-No. 8 2018 edition, p. 549.
  25. World Meteorological Organization (WMO) (2018b). WMO Solid Precipitation Intercomparison Experiment (SPICE) (2012- 2015). IOM Report- No. 131, Geneva, Swiss, p. 1445.
  26. World Meteorological Organization (WMO) (2023). State of the global climate 2022. WMO-No. 1316, Geneva, Swiss, p. 55.
  27. Wu, X., Wang, X., Liu, S., Yang, Y., Xu, G., Xu, Y., Jiang, T., and Xiao, C. (2021). "Snow cover loss compounding the future economic vulnerability of western China." Science of The Total Environment, Vol. 755, No. Part 1, 143025.
  28. Zheng, F., Wu, B., Wang, L. Peng, J., Yao, Y., Zong, H., Bao, Q., Ma, J., Hu, S., Ren, H., Cao, T., Lin, R., Fang, X., Tao, L., Zhou, T., and Zhu, J. (2023). "Can Eurasia experience a cold winter under a third-year La Nina in 2022/23?." Advances in Atmospheric Sciences, Vol. 40, pp. 541-548.  https://doi.org/10.1007/s00376-022-2331-8