• Title/Summary/Keyword: Manufacturing Processes

Search Result 2,397, Processing Time 0.036 seconds

Optimization for high speed manufacturing of Ti-6Al-4V alloy by a selective laser melting technique (SLM 기술을 이용한 Ti-6Al-4V 합금의 고속 적층 공정 최적화 연구)

  • Lee, Kang Pyo;Kim, Kang Min;Kang, Suk Hyun;Han, Jun Hyun;Jung, Kyung Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.217-221
    • /
    • 2018
  • Selective laser melting (SLM) technique is one of the additive manufacturing processes, in which functional, complex parts can be directly manufactured by selective melting layers of powder. SLM technique has received great attention due to offering a facile part-manufacturing route and utilizing a hard-to-manufacturing material (e.g. Ti6Al4V). The SLM process allows the accurate fabrication of near-net shaped parts and the significant reduction in the consumption of raw materials when compared to the traditional manufacturing processes such as casting and/or forging. In this study, we focus the high-speed additive manufacturing of Ti6Al4V parts in the aspect of manufacturing time, controlling various process parameters.

Development of Flexible Manufacturing System using Virtual Manufacturing Paradigm

  • Kim, Sung-Chung;Park, Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.84-90
    • /
    • 2000
  • The importance of Virtual Manufacturing System is increasing in the area of developing new manufacturing processes, implementing automated workcells, designing plant facility layouts and workplace ergonomics. Virtual manufacturing system is a computer system that can generate the same information about manufacturing system structure, states, and behaviors as is observed in a real manufacturing. In this research, a virtual manufacturing system for flexible manufacturing cells (VFMC), (which is a useful tool for building Computer Integrated Manufacturing (CIM), has been developed using object-oriented paradigm, and implemented with software QUEST/IGRIP. Three object models used in the system are the product model, the facility model, and the process model. The concrete behaviors of a flexible manufacturing cell are re[presented by the task-oriented description diagram, TIC. An example simulation is executed to evaluate applicability of the developed models, and to prove the potential value of virtual manufacturing paradigm.

  • PDF

Morphological Analysis Study for the Development of DB on the Medicinal Herbs Manufacturing Process - with focus on the manufacturing method of Rehmanniae radix - (본초 제조 공정의 DB화를 위한 형태소 분석 연구 - 숙지황 제조 공정을 중심으로 -)

  • Kim, Thaeyul;Kim, Kiwook;Kim, Byungchul;Lee, Byungwook
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.111-124
    • /
    • 2016
  • Objectives : Treatment method using drugs has already been used in Korean medicine for a long time. Moreover, database has been developed and utilized for more efficient management of the treatments that use drugs. Most of such database related to knowledge on drugs is composed of origin, efficacy, temperament, ingredients and examples of application of the standardized drugs. Communication with knowledge information in other specialized areas is also accomplished by using the efficacies and ingredients with the drugs. In this study, we aimed to make data structure of the terminologies that represent the manufacturing process of herbs. However, in spite of the fact that the manufacturing process of the drugs imparts effect on their efficacies and ingredients, details of the manufacturing processes are quite limited to simple text sentences, thereby resulting in substantially lower level of utilization and difficulties in systematic researches on various factors included in the manufacturing processes in comparison to other knowledge on drugs. Methods : This Study extracted the factors necessary in the development of database by executing morphological analysis of the manufacturing process of herbs. Results : The factors are 'Order', 'Act', 'Raw material', 'Tools', 'Supporting materials', 'Intensity', 'Duration Time', 'Interval', 'Focus', 'Repetition Number', 'Untill'. We were able to tell the difference of the manufacturing process with a simple structured query language and the factors. Conclusions : Morphological analysis of medicinal herbs manufacturing Process contributes to standardization with information of the manufacturing process. And it helps to creates a quality management system through the Database.

Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes (PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가)

  • Yoon, Jong-Cheon;Lee, Min-Gyu;Choi, Chang-Young;Kim, Dong-Hyuk;Jeong, Myeong-Sik;Choi, Yong-Jin;Kim, Da-Hye
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.

Building the Quality Management System for Compact Camera Module(CCM) Assembly Line (휴대용 카메라 모듈(CCM) 제조 라인에 대한 데이터마이닝 기반 품질관리시스템 구축)

  • Yu, Song-Jin;Kang, Boo-Sik;Hong, Han-Kook
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.89-101
    • /
    • 2008
  • The most used tool for quality control is control chart in manufacturing industry. But it has limitations at current situation where most of manufacturing facilities are automated and several manufacturing processes have interdependent relationship such as CCM assembly line. To Solve problems, we propose quality management system based on data mining that are consisted of monitoring system where it monitors flows of processes at single window and feature extraction system where it predicts the yield of final product and identifies which processes have impact on the quality of final product. The quality management system uses decision tree, neural network, self-organizing map for data mining. We hope that the proposed system can help manufacturing process to produce stable quality of products and provides engineers useful information such as the predicted yield for current status, identification of causal processes for lots of abnormality.

  • PDF

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Structural Optimization of Additive/Subtractive Hybrid Machines (3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구)

  • Park, Joon-Koo;Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Manual Application of Adhesives

  • Hellmanns, Mark;Bohm, Stefan;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.24-27
    • /
    • 2006
  • International standards claim the best possible reliability in industrial manufacturing processes. This is also essential for the application with manual applicators. The application of adhesives with manual applicators is one of the most frequently used application techniques. The range of application reaches from the building of prototypes in the automobile industry over the use in single or small-batch manufacturing up to applications in crafts enterprises. Conventional manual applicators for adhesives and sealants don't fulfill the demands in international standards for the best possible reliability. Only the worker is able to control the quality and the quantity of the bond. A velocity-controlled manual applicator solves these restrictions. Special sensors and micro controllers calculate the flow-rate, the velocity and the location of the manual applicator. This leads to stable and repeatable application processes which are claimed in international standards. The location of the bond can be compared with the nominal value, so that it is possible to check the quality of the bond during application. Furthermore there is the potential to document the data of the manufacturing process.

  • PDF

A Study on Process Management Method of Offshore Plant Piping Material (해양플랜트 배관재 공정관리 방법에 관한 연구)

  • Park, JungGoo;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • In order to secure manufacturing competitiveness of offshore plants, piping process is one of the most important processes. This study is about the design of management system for piping materials manufacturing of the offshore plant. As a result of the study, we analyzed the system and algorithms needed for the processing of piping material products and designed the structure of the entire management system. We conducted a process analysis of the design, manufacturing and installation processes. And also we proposed a system structure to improve the various problems that have come out. We also proposed an algorithm to determine the delivery order of the pipe spools, and proposed a raw material management system for the manufacturing of the pipe spools. And we designed a manufacturing process management system to manage the risk of pipe materials delivery. And finally we proposed a data structure for the installation process management system. The data structures and algorithms were actually implemented, and applied the actual process data to verify the effect of the system.