• Title/Summary/Keyword: Manned-Unmanned

Search Result 127, Processing Time 0.182 seconds

A Study on the standardization of ETCS (Focused on RF) (자동요금징수시스템(ETCS) 표준화 연구(주파수방식을 중심으로))

  • Kwon, Han-Joon;Lee, Ki-Hyun;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.62-73
    • /
    • 2008
  • In this paper, domestic standard revision plan of dynamic frequency method which is used both in unmanned automatic toll collection system and manned collection system of the express highway is presented. For such ETCS, the infrared rays (870 nm) of active frequency method and the frequency integrated method (5.8 GHz) are adopted and extended to be operated to the all around the Toll Gate. This standardization plan is based on inter connection reference model between OSI (Open System Interconnection) in process of ITS short range radio communication standardization of 5.8 GHz bandwidth to support traffic information and control system service, and the derived revision plan by starting from physical layer which support interoperability for multiple access between RSE (Road Side Equipment) and OBE (On Board Equipment), in which is categorized into physical layer, data link layer, and application layer. In case of radiation power, existing standard is divided by class1 (within 10 m) and Class2 (within 100 m) according to transmission lengthwhile it is operated with just single standard 'Class1' because of notification of Ministry of Information and Communication in 2004. In the case of the limitation value of incident power in communication area, considering operation plan of ETCS that is on actuality operation the measurements are reflected to the standard. In other wort this paper proposed the improvement standard of incident power, pseudo response in the communication area and radiated power in order to secure stability and compatibility among operator systems about the needed part on ETCS operation.

  • PDF

Development of the Operating Cost Estimation Models to Evaluate the Validity of Urban Railway Investment (도시철도 투자타당성 평가를 위한 운영비용 추정모형 개발)

  • KIM, Dong Kyu;PARK, Shin Hyoung;KIM, Ki Hyuk
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.465-475
    • /
    • 2016
  • Since inaccurate demand estimation for recent urban rail construction may result in financial burden to cities, precise prediction for operating cost as well as construction costs is necessary to avoid or reduce budget loss of the local or central government. The operating cost is directly related to the public fare and affect a policy to determine the rate system. Therefore, there is a pressing need to develop an estimating model for reliable operating cost of urban railway. This study introduces a new model to estimate the operating cost with new variables. It provides a better prediction in accuracy and reliability compared to the existing model, considering the feature of urban railway. For verification of our model, railway operation data from a few cities for the last five years were comprehensively examined to determine variables that affect the operating cost. The operating cost was estimated in a dummy regression model using five independent variables, which were average distance between stations, daily trains distance, total passenger capacity of a train in a train, driving mode(manned/unmanned), and investment type(financial/private).

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM (사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용)

  • Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.135-143
    • /
    • 2021
  • Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.

Implementation and Performance Analysis for MX-S2X, Ship Centric Direct Communication based on High-frequency (고 주파수 기반 선박중심 직접통신(MX-S2X) 물리계층 구현 및 성능분석)

  • Hye-Jin, Kim;Hyung-Jick, Ryu;Jin-Yeong, Chang;Won-Yong, Kim;Bu-Young, Kim;Woo-Seong, Shim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.570-575
    • /
    • 2022
  • The MX-S2X, utilizing high-frequency broadband communication technology, provides a reliable connection between land, ship, and facilities. This technology is expected to be effectively utilized as a future maritime communication infrastructure in the upcoming mixed navigational situation among autonomous and manned and/or unmanned ships. Following the physical layer design and M&S-based performance analysis of the MX-S2X system to overcome maritime multipath fading, this paper confirms the optimized and detailed design of physical layer hardware and implemented it to verify the performance. The PER(Packet Error Rate) performance was then measured by configuring a test environment to verify the implemented hardware. The results showed that the performance degradation was 0.2 dB in the AWGN environment and 1.2 dB in the Multi-path Fading on Sea Environment, thus confirming the successful implementation of the physical layer.

Re-establishing Method of Stability Margin Airworthiness Certification Criteriafor Flight Control System (비행제어시스템 안정성 여유 감항인증 기준 재정립 방안)

  • Kim, Dong-hwan;Kim, Chong-sup;Lim, Sangsoo;Koh, Gi-oak;Kim, Byoung soo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2022
  • A certain level of stability margin airworthiness criteria should be met to secure robustness against uncertainties between the real plant and the model in a flight control system design. The U.S. Department of Defense (DoD) specification of MIL-F-9490D and airworthiness certification standard of MIL-HDBK-516B uses gain and phase margin criteria of flight control system. However, the same stability margin criteria is applied at all development phases without considering the design maturity of each development phase of the aircraft. Ultimately, a problem arises when the aircraft operation envelope is excessively restricted. This paper proposes the relation of handling qualities and stability margin, and presents re-established stability margin criteria as a development phases and verification methods. The results of the research study are considered to contribute to the verification of the stability margin criteria more flexibly and effectively by applying the method to not only the currently manned developing aircrafts but also the unmanned vehicle to be developed in the future.

Capabilities Required for Underground Facility Operations in Korean Megacities (한국 메가시티 지하시설 작전에 요구되는 능력)

  • Jun Hak Sim;Seung Jin Jo;Jun Woo Kim;Ji Woong Choi;Won Jun Choi;Sun Il Yang;Sang Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.267-272
    • /
    • 2024
  • Recently, major advanced countries are fostering megacities through policy for reasons such as solving population problems, political and economic issues, and strengthening national competitiveness. The trend of change is accelerating. In Korea, following Seoul and Gyeonggi, mega city policies are being promoted in Busan, Ulsan, Gyeongnam, Daegu and Gyeongbuk, Gwangju and Jeonnam, and Daejeon, Sejong, South Chungcheong and North Chungcheong areas. Due to this urbanization phenomenon, military experts predict that the future battlefield environment will be space or a large city (mega city). From this perspective, Korea will not be able to effectively respond to the threats facing megacities if it does not prepare in advance. Therefore, underground facility operation capabilities optimized for the huge scale of the mega city and the characteristics of the underground operational environment are required. Against this background, the characteristics of the underground operational environment of mega cities and cases of preparation for underground facility operations in advanced military countries such as the United States and Israel were analyzed. Based on this, the capabilities required for underground facility operations suitable for the underground operational environment within Korean megacities are developed from an idea perspective to military organization and combat system, securing special equipment and materials to ensure combatant survival, developing small unit combat techniques, and establishing a training system. It was presented with priority given to.