Browse > Article
http://dx.doi.org/10.5656/KSAE.2021.02.0.009

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM  

Park, Yong-Lak (Entomology Program, Division of Plant and Soil Sciences, West Virginia University)
Cho, Jum Rae (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Choi, Kyung-Hee (Research Policy Bureau, Rural Development Administration)
Kim, Hyun Ran (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Ji Won (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension Services)
Kim, Se Jin (Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Lee, Dong-Hyuk (Apple Research Institute, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Park, Chang-Gyu (Korea National College of Agriculture and Fisheries)
Cho, Young Sik (Apple Research Institute, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Publication Information
Korean journal of applied entomology / v.60, no.1, 2021 , pp. 135-143 More about this Journal
Abstract
Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.
Keywords
satellites; drone; remote sensing; geographic information system; artificial intelligence; apple IPM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S., 2020. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol., 113, 1-25.   DOI
2 Fitzgerald, G.J., Maas, S.J., Detar, W.R., 2004. Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Prec. Agric., 5, 275-289.   DOI
3 Hasan, R.I., Yusuf, S.M., Alzubaidi, L., 2020. Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants, 9, 1302.   DOI
4 Herren, H.R., Bird, T.J., Nadel, D.J., 1987. Technology for automated aerial release of natural enemies of the cassava mealybug and cassava green mite. Int. J. Trop. Insect Sci., 8, 883-885.   DOI
5 Jensen, R.R., 1983. Biophysical remote sensing. Ann. Assoc. Am. Geogr., 73, 111-132.   DOI
6 Kim, J., Huebner, C., Reardon, R., Park, Y.-L., 2021. Spatiallytargeted biological control of mile-a-minute weed using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system. J. Econ. Entomol., in press.
7 Mogili, U.R., Deepak, B.B.V.L., 2018. Review on application of drone systems in precision agriculture. Proc. Comp. Sci., 133, 502-509.   DOI
8 Moran, M.S., Inoue, Y., Barnes, E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ., 61, 319-346.   DOI
9 NGAC, 2016. Emerging technologies and the geospatial landscape. National Geospatial Advisory Committee, U.S. Department of Interior, Washington, D.C..
10 Park, Y.-L., Gururajan, S. Thistle, H., Chandran, R., Reardon, R., 2018. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system. Pest Manag. Sci., 74, 141-148.   DOI
11 Hastie, T., Tibshirani, R., Friedman, J., 2009. Overview of supervised learning, in: Hastie, T., Tibshirani, R., Friedman, J. (Eds), The elements of statistical learning, Springer, New York, pp. 9-41.
12 Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A., 2014. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Prot., 63, 120-130.   DOI
13 Park, Y.-L., Krell, R.K., Carroll, M., 2007. Theory, technology, and practice of site-specific insect pest management. J. Asia-Pac. Entomol., 10, 89-101.   DOI
14 Park, Y.-L., Tollefson, J.J., 2005. Spatial prediction of corn rootworm (Coleoptera: Chrysomelidae) adult emergence in Iowa cornfields. J. Econ. Entomol., 98, 121-128.   DOI
15 Roosjen, P.P., Kellenberger, B., Kooistra, L., Green, D.R., Fahrentrapp, J., 2020. Deep learning for automated detection of Drosophila suzukii: potential for UAV‐based monitoring. Pest Manag. Sci., 76, 2994-3002.   DOI
16 Bauer, M.E., 1985. Spectral inputs to crop identification and condition assessment. Proc. IEEE, 73, 1071-1085.   DOI
17 Brewster, C.C., Allen, J.C., Kopp, D.D., 1999. IPM from space: Using satellite imagery to construct regional crop maps for studying crop-insect interaction. Am. Entomol., 45, 105-17.   DOI
18 Carroll, M.W., Glaser, J.A., Hellmich, R.L., Hunt, T.E., Sappington, T.W., Calvin, D., Copenhaver, K., Fridgen, J., 2008. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol., 101, 1614-1623.   DOI
19 Clevers, J.G.P.W., 1999. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm., 54, 299-304.   DOI
20 Chapman, R.F., 1999. The Insects: structure and function, 4th edition. Cambridge University Press, Cambridge.
21 Curran, P.J., 1985. Aerial photography for the assessment of crop condition: a review. Appl. Geogr., 5, 347-360.   DOI
22 Felsot, A.S., Unsworth, J.B., Linders, J.B., Roberts, G., Rautman, D., Harris, C., Carazo, E., 2010. Agrochemical spray drift; assessment and mitigation - A review. J. Environ. Sci. Health Part B, 46, 1-23.   DOI
23 Rosenthal, G., 2017. PPQ explores the tantalizing promise of unmanned air- craft systems. USDA APHIS. from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems (accessed on 15 February, 2020).
24 Russell, S., Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th edition. Pearson, London.
25 Rustia, D.J.A., Chao, J.J., Chiu, L.Y., Wu, Y.F., Chung, J.Y., Hsu, J.C., Lin, T.T., 2021. Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method. J. Appl. Entomol., in press.
26 Taiz, L., Zeiger, E., 2006. Plant physiology, 4th edition. Sinauer Associates, Inc., Sunderland, MA.
27 Wang, A., Zhang, W., Wei, X., 2019. A review on weed detection using ground-based machine vision and image processing techniques. Comp. Electron. Agric., 158, 226-240.   DOI
28 Yang, Z., Rao, M.N., Elliott, N.C., Kindler, S.D., Popham, T.W., 2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comp. Electron. Agric., 47, 121-135.   DOI
29 Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W., 2019. Monitoring plant diseases and pests through remote sensing technology: a review. Comp. Electron. Agric., 165, 104943.   DOI