• 제목/요약/키워드: Manganese peroxidase (MnP)

검색결과 52건 처리시간 0.031초

Trametes versicolor 의한 triphenyl methane계 염료의 분해 (Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor)

  • 백승아;최재혁;이태수;임경환
    • 한국버섯학회지
    • /
    • 제13권1호
    • /
    • pp.63-67
    • /
    • 2015
  • 구름버섯(Trametes versicolor)은 phenolic compound인 CV와 MG를 효과적으로 탈색할 수 있었으며 고체와 액체배양 상태 모두에서 CV보다 MG를 더 효과적으로 탈색시켰다. 구름버섯에 의한 두 색소의 탈색 과정에서 phenolic compounds를 분해하는 것으로 알려진 세 가지 효소 중 laccase의 활성이 가장 높았다. MnP 역시 적은 수치지만 활성을 나타냈으며 LiP의 활성은 나타나지 않았다. 따라서 구름버섯에 의한 합성염료의 분해과정에서 laccase가 주로 사용되고 MnP는 탈색과정에서 보조적인 작용을 하는 것으로 추정된다. 그러나 CV의 경우 MnP가 활발하게 염료분해에 관여하는 것으로 판단된다. 또한 MG가 대부분 탈색되었을 때의 laccase 활성(0.16 U/mg)이 CV가 대부분 탈색되었을 때의 활성(0.23 U/mg)보다 현저하게 낮은 것으로 보아 구름버섯이 CV를 탈색시키는데 더 높은 활성의 laccase가 필요로 하는 것이 밝혀졌다. 본 실험에서 한국산 구름버섯 종의 CV와 MG 탈색능력이 확인되었으며 앞으로 한국산 구름버섯을 이용한 triphenyl methane계에 속하는 합성염료의 분해에 관한 친환경적 처리기술 개발에 도움이 될 것으로 기대된다.

Effect of Cadium Ions on the Activity of Fungal Laccase and Its Decolorization of Dye, RBBR

  • Jarosz-Wilkolazka, A.;Malarczyk, E.;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.14-22
    • /
    • 2004
  • The effect of cadmium ions on ligninolytic and decolourizing activities in cultures of two white-rot fungi, Cerrena unicolor and Trametes versicolor, were examined. Cadmium was added to the shallow stationary cultures growing on a liquid mineral medium. Both examined strains sorbed Cd ions in the first 24 hr of incubation. An appreciable stimulation of the activity of extracellular laccase (LAC) and inhibition of the extracellular manganese-dependent peroxidase (MnP) were simultaneously observed when 25 mgL-1 and 50 mgL-1 of cadmium ions were added to the cultures. On the other hand, the addition of cadmium ions also resulted in stimulating the decolorization activity of C. unicolor to decolorize Remazol Brilliant Blue R (RBBR) in the cultures, but decreasing it in the culture of T. versicolor, which is compared to the inhibition of MnP activity in this fungus. Our data indicate that the presence of Cd(II) ions can affect the ligninolytic activity of white-rot fungi. It was found that C. unicolor is a strain resistant to the presence of Cd ions in the liquid culture media, and has a potential to use this strain for bioremediation of sites contaminated with both heavy metals and aromatic pollutants.

Studies on the Ligninolytic Enzyme Activities During Biological Bleaching of Kraft Pulp with Newly Isolated Lignin-Degrading Fungi

  • Lee, Seon-Ho
    • 펄프종이기술
    • /
    • 제31권2호
    • /
    • pp.8-14
    • /
    • 1999
  • A screening has been performed to find hyper-ligninolytic fungi, which degtrade beech and pine lignin extensively in order to broaden the understanding of the ligninolytic enzymes elaborated by various white-rot fungi. One hundred and twenty two ligninolytic strains were selected from decayed woods with a selective medium for screening ligninolytic wood-rotting fungi. Two of them, Phanerochaete sordida YK-624 and YK-472, showed much higher ligninolytic activity and selectivity in beech-wood degradation than typical lignin-degrading fungi, phanerochaete chrysosporium and Coriolus versicolor. They also degraded birch dioxane lignin and residual lignin in unbleached kraft pulp(UKP) much more extensively than P. chrysosporium and C. versicolor. During fungal treatment of beech wood-powder, the fungus strain P. sordida YK-624 showed higher activity of extracellular manganese peroxidase (MnP) in the medium than P. chrysosporium. It also showed MnP activity, which would not be lignin peroxidast during treatment of oxygen-bleached kraft pulp(OKP) and under enzyme-inducing conditin.

  • PDF

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별 (Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems)

  • 홍창영;김호용;장수경;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.19-32
    • /
    • 2013
  • 본 연구에서는 백색부후균의 리그닌 분해 효소 시스템을 이용하여, 다양한 균주 중에서 목질계 바이오매스 유기용매 전처리 과정에서 발생한 리그닌(유기용매 리그닌)의 생분해에 적합한 우수 균주를 선별하고자 하였다. 우선 분양받은 15개의 백색부후균을 대상으로 shallow stationary cultur (SSC)배지와 malt extract broth (MEB)배지에 유기용매 리그닌의 첨가에 따른 Remazol Brilliant Blue R (RBBR)의 흡광도 변화를 측정하였다. RBBR 탈색능 결과, SSC 배지에서 Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, Stereum hirsutum 등 6종의 백색부후균에서 급격한 흡광도 변화를 나타냈다. 배양 초기에 급격한 흡광도 변화를 나타낸 6개의 백색부후균을 대상으로 균체 외 단백질 농도 및 리그닌 분해 효소 활성을 측정하였다. 선발된 6개의 균 중에서 S. hirsutum과 P. chrysosporium은 유기용매 리그닌을 첨가한 실험구에서 높은 단백질 농도가 측정되었다. 반면, 리그닌 분해 효소 활성은 F. insularis에서 배양 6일째에 manganese peroxidase (MnP) 활성이 1,545 U/mg, laccase 활성은 1,259 U/mg으로 최고 활성을 나타냈다. 결론적으로, 균체 외 단백질 농도 및 리그닌 분해 효소 활성이 전반적으로 높았던 $STH^*$와 MnP 및 laccase의 활성이 가장 높은 FOI가 유기용매 리그닌 생분해에 유리하게 작용할 것으로 판단된다.

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • Carneiro, Rita Terezinha de Oliveira;Lopes, Maiza Alves;Silva, Marilia Lordelo Cardoso;Santos, Veronica da Silva;Souza, Volnei Brito de;Sousa, Aurizangela Oliveira de;Pirovani, Carlos Priminho;Koblitz, Maria Gabriela Bello;Benevides, Raquel Guimaraes;Goes-Neto, Aristoteles
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.179-188
    • /
    • 2017
  • White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

The mycelial growth and ligninolytic enzyme activity of cauliflower mushroom (Sparassis latifolia)

  • Sou, Hong-Duck;Ryoo, Rhim;Ka, Kang-Hyeon;Park, Hyun
    • Forest Science and Technology
    • /
    • 제13권4호
    • /
    • pp.158-163
    • /
    • 2017
  • We examined the activities of lignin-degrading enzymes of the mycelium of cauliflower mushroom (Sparassis latifolia). Three different strains of S. latifolia collected from several sites in Korea and one crossbred strain were cultured on potato dextrose broth (PDB) and Kirk's medium in order to study the activities of their ligninolytic enzymes. Mycelial growth reached maximum levels between 14 and 21 days after inoculation and pH increased by 0.12 units over 35 days. Laccase activity began increasing after 14 days on both types of media. Manganese peroxidase (MnP) activity followed a trend similar to that of laccase on Kirk's medium, but not on PDB. The activity of lignin peroxidase (LiP) differed from that of other enzymes; its activity decreased by half after 14 days on PDB but remained constant on Kirk's medium over 35 days. The total protein concentration increased considerably after 14 days and peaked at 21 days on PDB. A similar maximum was attained on Kirk's medium. In contrast, the residual glucose increased rapidly at 14 days on Kirk's medium, while increasing gradually up to 28 days on PDB. This study indicates that S. latifolia is more similar to white rot fungi than to other brown rot fungi.

Morphological Characteristic Regulation of Ligninolytic Enzyme Produced by Trametes polyzona

  • Lueangjaroenkit, Piyangkun;Teerapatsakul, Churapa;Chitradon, Lerluck
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.396-406
    • /
    • 2018
  • A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.

Funalia trogii에 의한 Laccase와 Manganese Peroxidase의 생산시 $Zn^{2+}$ 및 Ferulic Acid가 미치는 영향 (Effect of $Zn^{2+}$ and Ferulic Acid on Laccase and Manganese Peroxidase Production by Funalia trogii)

  • 박철환;한은정;이병환;이진원;김상용
    • KSBB Journal
    • /
    • 제21권2호
    • /
    • pp.85-89
    • /
    • 2006
  • F. trogii ATCC 200800으로부터 원형질체 분리를 통해 단일균주들을 선별하였으며, 선별된 균주들의 고체배양 및 agar plug assay를 통해 효소생산을 위한 균주를 대량 선별하였다. Agar plug assay를 통해 4일 동안 100여종 이상의 균주를 동시에 배양, 분석이 가능하였으며, 염료분해환을 형성하지 않은 균주는 액체배양 확인 결과 MnP의 생산이 거의 일어나지 않는 것으로 나타났다. 이러한 방법으로 선별된 균주를 이용하여 UV 돌연변이를 통해 모균주로부터 유전적 변이를 유도해 새로운 균주선별을 시도하였으며, 이로부터 모균주와 비교하여 효소생산성이 향상되고 안정성이 증대된 균주를 선별할 수 있었다. 모균주와 선별된 균주의 명확한 유전적 차이를 규명하기보다는 배양시 형태학적 특성이 상이함을 확인하였다. 또한, 선별된 균주를 이용하여 배양액내에 다양한 종류의 inducer를 첨가에 따라 효소생산에 미치는 영향을 확인하였다. 과량의 inducer 물질이 첨가될 경우, 균체성장은 물론 효소생산성도 크게 떨어졌으며, 균체성장이 어느 정도 이루어진 상태 즉, 이차대사가 이루어지는 시점에서 inducer를 첨가할 경우 그 효율이 최대였으며, 동시에 inducer를 첨가할 경우 보다 미량씩 일정량을 나누어 주입할 경우 효소생산에 더 유리한 것으로 나타났다.

Mycelial response and ligninolytic enzyme production during interspecific interaction of wood-rotting fungi

  • Lee, Kab-Yeon;Park, Seur-Kee;Park, In-Hyeop;Kim, Joon-Sun;Park, Moon-Su;Jung, Hyun-Chae
    • 한국버섯학회지
    • /
    • 제15권4호
    • /
    • pp.168-177
    • /
    • 2017
  • To evaluate effects of ligninolytic enzyme type on the mycelial response and ligninolytic enzyme production during interspecific interactions among wood-rotting fungi, 4 fungal strains, Trichophyton rubrum LKY-7, Trichophyton rubrum LSK-27, Pycnoporus cinnabarinus, and Trichoderma viride, were selected. Regarding ligninolytic enzyme production, LKY-7 secreted laccase and manganese peroxidase (MnP), P. cinnabarinus secreted only laccase, and LSK-27 secreted only MnP in glucose-peptone medium, while T. viride did not produce any ligninolytic enzymes. In the co-culture of LKY-7 with P. cinnabarinus, the formation of aerial mycelium was observed and the enhancement of laccase activity owing to interspecific interaction appeared to be very low. In the co-culture of LKY-7 and P. cinnabarinus with LSK-27, a hypha-free clear zone was observed, which resulted in deadlock, and increased laccase or MnP activity was detected at the interaction zone. The interaction responses of LKY-7, P. cinnabarinus, and LSK-27 with T. viride were characterized by the formation of mycelial barrages along the interface. As mycelial barrages were observed at the T. viride territory and no brownish pigment was observed in the mycelial barrages, it is suggested that laccase and MnP are released as part of an offensive response, not as a defensive response. The co-culture of P. cinnabarinus with T. viride lead to the highest enhancement in laccase activity, yielding more than 14-fold increase in laccase activity with respect to the mono-culture of P. cinnabarinus. MnP activities secreted by LKY-7 or LSK-27 was generally low in interspecific interactions.