DOI QR코드

DOI QR Code

Morphological Characteristic Regulation of Ligninolytic Enzyme Produced by Trametes polyzona

  • Received : 2018.08.02
  • Accepted : 2018.10.07
  • Published : 2018.12.31

Abstract

A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.

Keywords

References

  1. Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol. 2002;30:454-466. https://doi.org/10.1016/S0141-0229(01)00528-2
  2. Riverra-Hoyos CM, Edwin DM, Raul AP, et al. Fungal laccases. Fungal Biol Rev. 2013;27:67-82. https://doi.org/10.1016/j.fbr.2013.07.001
  3. Teerapatsakul C, Parra R, Bucke C, et al. of Ganoderma sp. KU-Alk4, regulated by different glucose concentration in alkaline media. World J Microbiol Biotechnol. 2007;23:1519-1527. https://doi.org/10.1007/s11274-007-9396-5
  4. Fang W, Fernandes EKK, Roberts DW, et al. A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genet Biol. 2010;47:602-607. https://doi.org/10.1016/j.fgb.2010.03.011
  5. Ujor VC, Monti M, Peiris DG, et al. The mycelial response of the white-rot fungus, Schizophyllum commune to the biocontrol agent, Trichoderma viride. Fungal Biol. 2012;116:332-341. https://doi.org/10.1016/j.funbio.2011.12.008
  6. Zhang J, Chen H, Chen M, et al. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiol Res. 2015;179:54-63. https://doi.org/10.1016/j.micres.2015.06.005
  7. Osma JF, Toca-Herrera JL, Rodriguez-Couto S. Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Appl Catal A. 2010;373:147-153. https://doi.org/10.1016/j.apcata.2009.11.009
  8. Teerapatsakul C, Parra R, Keshavarz T, et al. Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate. Int Biodeterior Biodegradation. 2017;120:52-57. https://doi.org/10.1016/j.ibiod.2017.02.001
  9. Teerapatsakul C, Chitradon L. Physiological regulation of an alkaline-resistant laccase produced by Perenniporia tephropora and efficiency in biotreatment of pulp mill effluent. Mycobiology. 2016;44:260-268. https://doi.org/10.5941/MYCO.2016.44.4.260
  10. Saito K, Ikeda R, Endo K, et al. Isolation of a novel alkaline-induced laccase from Flammulina velutipes and its application for hair coloring. J Biosci Bioeng. 2012;113:575-579. https://doi.org/10.1016/j.jbiosc.2012.01.001
  11. Fillat A, Gallardo O, Vidal T, et al. Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym. 2012;87:146-152. https://doi.org/10.1016/j.carbpol.2011.07.030
  12. Schubert M, Engel J, Thony-Meyer L, et al. Protection of wood from microorganisms by laccase-catalyzed iodination. Appl Environ Microbiol. 2012;78:7267-7275. https://doi.org/10.1128/AEM.01856-12
  13. Grover N, Borkar IV, Dinu CZ, et al. Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enzyme Microb Technol. 2012;50:271-279. https://doi.org/10.1016/j.enzmictec.2012.01.006
  14. Ihssen J, Schubert M, Thony-Meyer L, et al. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. Plos One. 2014;9:e89924. https://doi.org/10.1371/journal.pone.0089924
  15. Wen X, Jia Y, Li J. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J Hazard Mater. 2010;177:924-928. https://doi.org/10.1016/j.jhazmat.2010.01.005
  16. Mir-Tutusaus JA, Sarra M, Caminal G. Continuous treatment of non-sterile hospital wastewater by Trametes versicolor: how to increase fungal viability by means of operationalstrategies and pretreatments. J Hazard Mater. 2016;318:561-570. https://doi.org/10.1016/j.jhazmat.2016.07.036
  17. Teerapatsakul C, Pothiratana C, Chitradon L, et al. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J Gen Appl Microbiol. 2016;62:303-312. https://doi.org/10.2323/jgam.2016.06.001
  18. Alberts JF, Gelderblom WCA, Botha A, et al. Degradation of aflatoxin B(1) by fungal laccase enzymes. Int J Food Microbiol. 2009;135:47-52. https://doi.org/10.1016/j.ijfoodmicro.2009.07.022
  19. Purnomo AS, Mori T, Kamei I, et al. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation. 2010;64:397-402. https://doi.org/10.1016/j.ibiod.2010.04.007
  20. Babic J, Pavko A. Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer. J Ind Microbiol Biotechnol. 2012;39:449-457. https://doi.org/10.1007/s10295-011-1036-2
  21. Tavares APM, Coelho MAZ, Agapito MSM, et al. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl Biochem Biotechnol. 2006;134:233-248. https://doi.org/10.1385/ABAB:134:3:233
  22. Fomina M, Gadd GM. Influence of clay minerals on the morphology of fungal pellets. Mycol Res. 2002;106:107-117. https://doi.org/10.1017/S0953756201004786
  23. Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22:189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005
  24. Liao W, Liu Y, Frear C, et al. A new approach of pellet formation of a filamentous fungus - Rhizopus oryzae. Bioresour Technol. 2007;98:3415-3423. https://doi.org/10.1016/j.biortech.2006.10.028
  25. Kim Y, Song H. Effect of fungal pellet morphology on enzyme activities involved in phthalate degradation. J Microbiol. 2009;47:420-424. https://doi.org/10.1007/s12275-009-0051-8
  26. Lin P, Scholz A, Krull R. Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J. 2010;49:213-220. https://doi.org/10.1016/j.bej.2009.12.016
  27. Haroune L, Saibi S, Bellenger J, et al. Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Bioresour Technol. 2014;171:199-202. https://doi.org/10.1016/j.biortech.2014.08.036
  28. Ibrahim D, Weloosamy H, Lim S. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hypha and its pectinase production in submerged fermentation. World J Biol Chem. 2015;6:265-271. https://doi.org/10.4331/wjbc.v6.i3.265
  29. Wu HS, Lin BC. Effect of oxygen transfer and pellet size for producing of glucosamine using Aspergillus sydowii BCRC 31742 cultivated in a fermenter. J Food Process Technol. 2017;8:697. doi: 10.4172/2157-7110.1000697
  30. Tien M, Kirk TK. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of unique $H_{2}O_{2}$ requiring oxygenase. Proc Natl Acad Sci USA. 1984;81:2280-2284. https://doi.org/10.1073/pnas.81.8.2280
  31. Ruivo CCC, Lachance M, Rosa CA, et al. Candida bromeliacearum sp. nov. and Candida ubatubensis sp. nov., two yeast species isolated from the water tanks of Canistropsis seidelii (Bromeliaceae). Int J Syst Evol Microbiol. 2005;55:2213-2217. https://doi.org/10.1099/ijs.0.63698-0
  32. Moncalvo JM, Lutzoni FM, Rehner SA, et al. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol. 2000;49:278-305. https://doi.org/10.1093/sysbio/49.2.278
  33. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR Protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  34. Thompson JD, Higgins DG, Gibson TJ. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci. 1994;10:19-29.
  35. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony. Mol Biol Evol. 2011;28:2731-2739. https://doi.org/10.1093/molbev/msr121
  36. Kondo R, Harazono K, Sakai K. Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol. 1994;60:4359-4363.
  37. Kirk TK, Tien M, Kersten PJ, et al. Lignin peroxidase from fungi: Phanerochaete chrysosporium. Method Enzymol. 1990;188:159-171.
  38. Chandrasrikul A, Suwnnarit P, Sangwanit U, et al. Diversity of mushrooms and macrofungi in Thailand. Bangkok: Kasetsart University Press; 2008.
  39. Raksawong P, Flegel TW. Thai mushrooms and other fungi. National Center for Genetic Engineering and Biotechnology (BIOTEC). Bangkok: National Science and Technology Development Agency, 2001.
  40. Welti S, Moreau P, Favel A, et al. Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Divers. 2012;55:47-64. https://doi.org/10.1007/s13225-011-0149-2
  41. Chairin T, Nitheranont T, Watanabe A, et al. Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710-1 under solid-state fermentation. J Basic Microbiol. 2014;54:35-43. https://doi.org/10.1002/jobm.201200456
  42. Bilal M, Muhammad A, Roberto P, et al. Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants - a review. Sci Total Environ. 2017;576:646-659. https://doi.org/10.1016/j.scitotenv.2016.10.137
  43. Wang H, Chaozhi T, Guangli Y, et al. A novel membrane-surface liquid co-culture to improve the production of laccase from Ganoderma lucidum. Biochem Eng J. 2013;80:27-36. https://doi.org/10.1016/j.bej.2013.09.003
  44. Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, et al. Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J. 2016;283:553-571. https://doi.org/10.1016/j.cej.2015.07.068
  45. Bizukojc M, Gonciarz J. Influence of oxygen on lovastatin biosynthesis by Aspergillus terreus ATCC 20542 quantitatively studied on the level of individual pellets. Bioprocess Biosyst Eng. 2015;38:1251-1266. https://doi.org/10.1007/s00449-015-1366-y
  46. El-Enshasy H, Kleine J, Rinas U. Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem. 2006;41:2103-2112. https://doi.org/10.1016/j.procbio.2006.05.024
  47. Jimenez-Tobon G, Kurzatkowski W, Rozbicka B, et al. In situ localization of manganese peroxidase production in mycelial pellets of Phanerochaete chrysosporium. Microbiology (Reading, Engl). 2003;149:3121-3127. https://doi.org/10.1099/mic.0.26451-0
  48. Hille A, Neu TR, Hempel DC, et al. Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng. 2005;92:614-623. https://doi.org/10.1002/bit.20628

Cited by

  1. Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System vol.47, pp.2, 2018, https://doi.org/10.1080/12298093.2019.1589900
  2. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.00615
  3. Impact of Industrial Dyes on the Environment and Bacterial Peroxidase Isolated from Bacillus sp. BTS-P5 as a Possible Solution vol.9, pp.None, 2020, https://doi.org/10.2174/2211550109666200303110926
  4. Light Regulation of Two New Manganese Peroxidase-Encoding Genes in Trametes polyzona KU-RNW027 vol.8, pp.6, 2018, https://doi.org/10.3390/microorganisms8060852