Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun (Department of Agricultural Chemistry, College of Natural Resources, Korea University) ;
  • Lee, Il-Seok (Department of Agricultural Chemistry, College of Natural Resources, Korea University) ;
  • Song, Hee-Sang (Department of Agricultural Chemistry, College of Natural Resources, Korea University) ;
  • Bang, Won-Gi (Department of Agricultural Chemistry, College of Natural Resources, Korea University)
  • Published : 2000.12.01

Abstract

Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

Keywords

References

  1. Wood Res. Soc v.39 Enzymatic formation of oxalic acid form glyoxylaic with cell-free extracts of Tyromyces palustris. Akamatsu, Y.
  2. Wood Res. Soc v.39 Influences of various factors on oxaloacetase activity of the brown-rot fungus. Akamatsu, Y;M Takahashi;M. Shimada.
  3. FEMS Lett. v.269 A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. Akamatsu, Y.;D. B. ma;T. Higuchi;M. shimada.
  4. Arch. microbiol. v.136 Vanillic acid metabolism by Sporotrichum pulverulentum: Evidence for demethoxylation before ring-cleavage. Ander, P.;K. E. Eriksson;H. S. Yu.
  5. Appl. Environ. Microbiol. v.58 Prodution of manganicchelates by laccase form the lignin-degrading fungus Trametes(Coriolus) versicolor. Archibald, F. S;B. roy.
  6. Agric. Biol. Chem. v.50 Oxidation of NADH by a lignin-degrading Basidomycete, Phanerochaete chrysosporium, and its involvement in the degradation of a lignin model compound. Asada, Y;M. miyabe;M. Kikkawa;M. Kuwahara.
  7. Microb. Ecol. v.20 Degradation of environmental pollutants by phanerochaete chrysosporium. Aust, S. D.
  8. Eur. J. Biochem. v.267 Oxidation of aromatic sulfides by lignin peroxidase form Phanerochaete chrysosporium. baciocchi, E.;M. F. Gerini;P. J. harvey;O. Lanzalunga;S. Mancinelli.
  9. Arch. Biochem. Biophys. v.312 Conversion of lignin peroxidase compound Ⅲ to active enzyme by cation radicals. Barr, D. P.;S. D. Aust.
  10. Rev. Environ. Cont. Toxicol. v.138 Mechanisms white-rot fungus use to degrade pollutants. Barr, D. P.;S. D. Aust.
  11. J. Biol. Chem. v.268 Veratryl alcohol-dependent production of molecular oxygen by lignin peroxidase. Barr, D.bP.;M. m. Shah;S. D. Aust.
  12. Arch. Biochem. Biophys. v.298 Prodution of hydroxyl radical by lignin peroxidase form Phanerochaete chrysosporium. Barr, D. P.;M. M. Shah;T. A. Grover;S. D. Aust.
  13. Phytopathology v.74 Manganese accumulation in wood decayed by white rot fungi. Blanchette, R. A.
  14. Eur. J. Biochem. v.192 Effect of Mn(Ⅱ) on reactions catalyzed by lignin peroxidase form Phanerochaete chrysosporium. Bono, J.-J.;P. Goulas;J.-F. Boe, N. Portet;and J.-L. Seris.
  15. Appl. Environ. Microbiol. v.56 Mn(Ⅱ) regulation of lignin peroxidases and manganese-dependent peroxidases form lignin-degrading white-rot fungi. Bonnarme, P.;T. W. Jeffries.
  16. proc. Natl. Acad. Sci. USA v.89 cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Boominathan, K.;C. A. Reddy.
  17. Mol. microbiol v.19 Lignocellulose degradation by Phanerochaete chrysosporium:Gene families and gene expression for a complex process. Broda, P.;P. R. J. Birch;P. R. Brooks;P. F. G. Sims.
  18. J. Bacteriol. v.173 Manganese peroxidase gene transcription in Phanerochaete chrysosporium:Actvation by manganese. Brown, J.;M. Alic;M. H. Gold.
  19. Appl. Environ. microbiol. v.55 Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Bumpus, J. A.
  20. Appl. Environ. Microbiol. v.53 Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Bumpus, J. A;S. D. Aust;S. D.
  21. Mycotaxon v.1 A new Phanerochaete with a chrysosporium imperfect state. Burdsall, H. H.;W. E. Eslyn.
  22. J. Biol. Chem. v.267 Kinetic studies on the formation and decomposition of compounds Ⅱ and Ⅲ. Cai, D.;M. Tien.
  23. Appl. Environ. Microbiol. v.59 Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Cancel, A. M.;A. B. orth;M. Tien.
  24. J.Biotechnol. v.30 Lifetime and reactivity of the veratryl alcohol radical cation. Candeis L. P.;P. J. Harvey.
  25. DJ-12.J.Microbiol.Biotechnol. v.8 Hydrolytic dechlorination of 4-chlorobenzoate specified by fcbABC of Pseudomonas sp. Chae, J.-C;K.-J.Ahn;C.-K. Kim
  26. Holzforschung v.36 Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Chen, J.-C;H.-M. Chang;T. K. Kirk.
  27. Arch. Biochem. Biophys. v.322 Veratryl alcohol-mediated indirect oxidation of pentachlorophenol by lignin peroxidase. Chung, N;S. D. Aust.
  28. Arch. Biochem. Biophys. v.316 Inactivation of lignin phenols. Chung, N.;S. D. Aust.
  29. Arch.Biochem. Biophys. v.316 Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Chung, N;S. D. Aust.
  30. J. hazard. materials v.41 Degradation of pentachlorophenol in soil by Phanerochaete chrysosporium. Chung, N.;S. D. Aust.
  31. Arch. Biochem. Biophys. v.306 Reductive activity of a manganese-dependent peroxidase form phanerochaete chrysosporium. Chung, N.;M. M. Shah;T. A. Grover;S. D. Aust.
  32. Appl. Environ. Microbiol. v.59 Evidence for the existence of independent chloromethanc-utilizing and S-adenosylmethionnine-utilizing systems for methylation in Phanerochaete chrysosporium. Coulter, C.;J. T. G. hamilton;D. B. harper.
  33. Appl. Environ. microbiol. v.59 Purification and properties of an Sadenosylmethionine-2,4-disubstituted phenol O-methyltranferase form Phanerochaete chrysosporium. Coulter, C.;J. T. kennedy;W. C. McRoberts;D. B. harper.
  34. Appl. Environ. Microbiol. v.56 Biodegradation of azo and heterocyclic dtes by Phanerochaete chrysosporium. Cripps, C.;J. A. Bumpus;S. D. Aust.
  35. Pure Appl. Chem. v.53 Environmental chemistry of pentachlorophenol. Crosby, D. G.
  36. Can. J. Microbiol. v.18 Methylation of pentachlorophenol by Trichoderma virgatum. Cserjesi, A. J;E. L. Johnson.
  37. Appl. Environ. Microbiol. v.58 Ultrastructural and immunocytichemical studies on the H₂O₂-producing enzyme pyranose oxidase in Phanerochaete chrysosporium grown under liquid culture cinditions. Daniel, G.;J. Volc, E. Kubatova;T. Nilsson.
  38. Blackwell Sci. Introduction ti Modern Mycology. Deacon, J. W.
  39. FEMS Microbiol. Rev. v.13 Aryl alcohols in the physiology of ligninolytic fungi. De Jong, E;J. A. Field;J. A. M. de Bont.
  40. Appl. Microbiol. Biotechnol. v.39 Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Dutton, M. V.;C. S. Evans;P. T. Atkey;D. A. Wood.
  41. Methods Enzymol. v.161B Methanol oxidase of Phanerochaete chrysosporium. Eriksson, K.-E.;A. Nishida.
  42. Euro. J. Biochem. v.124 Purification and partial characterization of two acidic proteases form the white-rot fungus Sporotrichum pulverulentum. Eriksson, K.-E.;B. Petterson.
  43. Biotecehnol. Bioeng. v.20 Enzyme mechanism involved in cellulose hydrolysis in cellulose hydrolysis by the white rot fungus Sporotrichum Pulverulentum. Ekiksson, K-E.;B. petterson.
  44. Appl. Environ. Microbiol. v.52 Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium. Faison, B. D;T. K. kirk;R. Farrell.
  45. Biochim. Biophys. Acta. v.1076 The characterization of immobilised lignin peroxidase by flow injection analysis. Fawer, M. S.;J. Stierli;S. Cliffe;A. Fiechter.
  46. Appl. Environ. Microbiol. v.56 Biodegradation ofTNT(2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Fernando, T.; J. A. Reddy;H. S. pankratz.
  47. Appl. Environ Microbiol. v.44 Ultratructural localization of hydrogen peroxide production in ligninolytic Phanerochaete chrysosporium cells. Forney, L. J.;C. A. Reddy;H. S. pankratz.
  48. Holzforschung v.46 The reactions of hydroxyl radicals with aromatic rings in lignins, studied with creosol and 4-methylveratrol. Gierer, J.;E. yang;T. Reitberger.
  49. Biochim. Biophys. Acta v.1041 Radical intermediates in veratryl alcohol oxidation by ligninase. Gilardi, G.;P. J. Harvey;A. E. G. Cass;J. M. palmer
  50. Arch. Biochem. Biophys. v.251 Mn(Ⅱ) oxidation is the principal funtion of the extracellular Mn-peroxidase form Phanerochaete chrysosporium. Glenn, J. K.;L. Akileswaran;M. H. Gold.
  51. Arch. Biochem. Biophys. v.242 Purification and charactetization of an extracellular Mn(Ⅱ)-depenent peroxidase form the lignin-degrading dasidiomycete, Phanerochaete chrysosporium. Glenn, J. K.;M. H. Gold.
  52. Biochem. Biophys. Res. Commun. v.118 Electrogenic symport of glucose and protons in membrane vesiclse of Phanerochaete chrysosporium [White rot fungus]. Greene, R. V.;J. M. Gould.
  53. FEMS Microbiol. Lett. v.35 Polymerization of lignins by ligninases form Phanerochaete chrysosporium. Haemmerli, S. D.;M. S. A. Leisola;D. Sanglard;A. Fiechier.
  54. J. Biol. Chem. v.261 Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Haemmerli. S. D.;M. S. A. Leisola;D. Sanglard;A. Fiechier.
  55. FEBS Lett. v.307 Biologically relevant metal ion-dependent hydroxyl radical generation. Halliwell B.;J. M. Gutteridge.
  56. Biochemistry v.27 The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidase. Hammel, K. E.;P. J. Tardone.
  57. J. Biol. Chem. v.261 Oxidation of polycyclic zromatic hydrocarbons and dibenzo-[p]-dioxins by Phanerochaete chrysosporium ligninase. Hammel, K. E.;B. Kalyanaraman;T. K. Kirk.
  58. J. Gen. Microbiol. v.137 Effect of chloromethane on veratrtl alcohol and lignin peroxidase production by the fungus Phanerochaete chrysosporium. Harper, D. B.;J. A. Buswell;J. T. kennedy.
  59. Applied. Environ. Microbiol. v.55 Chloromethane, a novel methyl donor for biosynthesis of esters and anisoles in Phellinus pomaceus. Harper, D. B.;J. T. G. hamilton;J. T. K. Kennedy;K. J. McNally.
  60. J. Biotechnol. v.30 Charge transfer reactions and feed back control of lignin peroxidase by phenolic compounds: Significance in lignin degradation. harvey, P. J.;M. L. Gilardi;M. L. Goble;J. M. palmer.
  61. Biochim. Soc. Trans. v.20 Catalytic mechanisms and regulation of lignin peroxidase. Harvey, P. J.;R. Floris;T. Lundell.;J. M. Palmer. H. E. Schoemaker;R. Wever.
  62. J. Biotechnol. v.13 Oxidation of phenolic compounds by lignin peroxidase. Harvey, P.J.;J. M. palmer.
  63. Biochem. Biophys. Acta. v.994 Pre-steady-state kinetic study on the formation of Compound Ⅰ and Ⅱ of Ligninase. harvey, P. J.;J. M. Palmer;H. E. Schoemaker;H. l. Dekker;R. Wever.
  64. FEBS Lett. v.195 Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by harvey, P. J.;H. E. Schoemaker;J. M. palmer.
  65. FEBS Lett. v.183 Single electron processes and the reaction mechanism of enzymatic degradation of lignin. Harvey, P. J.;H. E. Schoemaker, R. M. Bowen;J. M. palmer.
  66. J. Biotechnol. v.30 Biodegradation mechanism og lignin by white-rot basidiomycetes. Higuchi, T.
  67. Wood Res. v.73 Catabolic pathways and role of liginases for the degradation of lignin substructure models by white-rot fungi. Higuchi, T.
  68. Appl. Environ. Microbiol. v.50 Production of cultures of Phanerochaete chrysosporium. jager, A.;S. Croan;T. K. kirk.
  69. J. Microbiol. Biotechnol. v.9 Effects of temperature and compost conditions on the degradation of degradable polymers. Jung, E. J.;P. K. Shin;H. K. bae.
  70. Methods Enzymol. v.161B Glucose oxidase of Phanerochaete chrysosporium. kelley, R. L.;R. C. Reddy.
  71. Proc. Natl. Acad. Sci. USA v.87 Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Kersten, P. J.
  72. Biochem. J. v.268 Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Kersten, P. J.; B. Kalyanaraman;K. E. Hammel;B. Reinhammar;T. K. Kirk.
  73. Biol. Chem. v.260 The ligninase of Phanerochaete chrysosporium generates cation radicals form methoxybenzens J. Kersten, P.;M. Tien;B. Kalyanaraman;T. K. Kirk.
  74. Biochem. J. v.59 The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Kenten, R. H.;P. J. G. Mann.
  75. Biochemistry v.35 EPR detection and characterization of lignin peroxidase porphyrin-carion radical. Khindaria, A.;S. D. Aust.
  76. Biochemistry v.35 Stabilization of the veratryl alcohol cation radacal by lignin peroxidase. Khindaria, A.;I. Yamazaki;S. D. Aust.
  77. Environ. Sci. Technol. v.29 Redutive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium. Khindaria, A.;T. A. Grover;S. D. Aust.
  78. Biochemistry v.34 Evidence for formation of the veratryl alcohol cation radacal by lignin peroxidase. Khindaria, A.;T. A. Grover;S. D. Aust.
  79. Arch. Biochem. Biophys. v.314 Oxalate-dependent reductive activity of manganese peroxidase form Phanerochaete chrysosporium. Khindaria, A.;T. A. Grover;S. D. Aust.
  80. J. Microbiol. Biotechnol. v.8 Degradation of polycyclic zromatic hydrocarbons by selected white-rot fungi and the influence of lignin peroxidase. Kim, M.-S.;E.-J.Huh;H.-K. Kim;K.-W.Moon.
  81. J. Microbiol. Biotechnol. v.6 Cultivation of Phanerochaete chrysosporium and lignin peroxidase activity. Kim, Y.-K.;G. Kim;M.-S. Jeong.
  82. Annu. Rev. Microbiol. v.41 Enzymatic "combustion": The microbial degradation of lignin. Kirk, T. K.;R. L. Farrel.
  83. Biochem. J. v.236 Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Kirk, T. K.;M. Tien, P. J. Kertsten;M. D. Mozuch;B. Kalyanarman.
  84. Degradation of lignin Microbial Degradation of Organic Compounds. Kirk, T. K.;In Gibson, D. T. (ed)
  85. Arch. Microbiol. v.117 Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporiun [Wood-destroying Hymenomycete]. Kirk, T. K.;E. Schultz;W. J. Connors;L. F. lorenz;J. G. Zeikud.
  86. Biochemistry v.33 Kinetic analysis of lignin peroxidase: Explanation for the mediation phenomenon by veratyl alcohol. Koduri, R. S.;M. Tien.
  87. Mokuzai Gakkaishi v.35 Biodegradation of milled wood lignin on cellulose particle by Lentinus edodes. Kofujita, H.;K. Nabeta;H. Okuyama;M. Miyake.
  88. Appl.Microbiol.Biotechnol. v.29 Extracellular ligninase of Phanerochaete chrysosporiun Burdsall has no role in the degradation of DDT. Kohler, A.;A. Jager;H. Willershausen;H. Graf.
  89. J. Biol. Biotechnol. v.268 Kinetic analysis of manganese peroxidase: The reaction with manganese complexes. Kuan, I. C.;K. A. Johnson;M. Tien.
  90. Proc. Natl. Acad.Sci. v.90 Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodegradation. Kuan, I.C.;M.tien.
  91. Biochem.Biophys. v.178 Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Lackner, R.;E. Srebotnik;K. Messner.
  92. Appl. Environ. Microbiol. v.56 Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Lamar, H. F.
  93. J. Am. Chem. Soc. v.55 The role of gaseous oxygen in the thermal reaction between manganic icon and oxalate ion. Launer, H. F.
  94. Cellulose Chem. Technol. v.22 Metabolism of a lignin model compound, 3,4-dimethoxybenzyl alcohol by Phanerochaete chrysosporium. Leisla, M. S.A.;D. Haemmerli;R. Waldner, H. E. Schoemaker;H. W. H. Schmidt;A. Fiechter.
  95. J. biol. Chem. v.262 Homology among multiple extracellular peroxidase form Phanerochaete chrysosporium. Leisola, M. S. A.;B. kozulic;F. meussdoerffer;A. Fiechter.
  96. J. Microbiol. Biotechnol. v.9 Characterization of an extracellular cellulose-hydrolyzing enzyme complex form a thermotolerant stain of Aspergillus sp. Lusta K. A.;I. K. Chung I. W. Sul;H. S. Park;D. I. Shin.
  97. J. Gen. Microbiol. v.130 Degradation of [^{14}C] Lignin-labeled wheat Lignocellulose by white-rot fungi. mcCarthy A. J.;M. J. macDonald;A. Paterson;P. Broda.
  98. Appl. Environ. microbiol. v.57 Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Michel F. C. J.;S. B. Dass;E. A. Grulke;C. A. Reddy.
  99. Biochem. J. v.236 Resolution, purication and some properties of the multiple forms of cellobiose quinone dehydrogenase form the white-rot fungus Sporotrichum pulverulentum. Morpeth F.;G. Jones.
  100. Eur. J. Biochem. v.195 Purification and properties of an aryl-alcohol dehydrogenase form the white-rot fungus Phanerochaete chrysosporium. Muheim A.;R. Waldner;D. Sanglard;J. Reiser;H. E. Schoemaker;M. S. A. Leisola.
  101. Environ. Microbiol. v.59 Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes form Phanerochaete chrysosporium. Ollikka P.;K. Alhonmaki;V. M. Leppanen;T. Glumoff;T. Raijola;I. Suominea.
  102. J. Microbiol. Biotechol. v.8 Extradiol cleavage of two-ring structures of biphenyl and indole oxidation by biphenyl dioxygenase in Commamaonas acidovorans. On, H.-Y.;N-R. Lee;Y-C. Kim;C.-K. Kim;Y. S. Kim;Y.-K. Park;J.-O. ka;K.-S. lee;K.-H. Min.
  103. J. Microbiol. Biotechnol. v.9 Isolation and characterization of soil Streptomyces involved in 2,4-dichlorophenol oxidation. Park C.;Y. kee;J. Lee;J. Oh;J. Park;H.Myung.
  104. J. Microbiol. Biotechnol. v.8 Biodegradation of phenol by a trichloroethylene-cometabolizing bacterium. Park G.-T.;H.-J. Son;J.-G. Kim;S.-J. Lee.
  105. Biochem. Biophys. v.178 Degradation of azo compounds by ligninase form Phanerochaete chrysosporium: Involvement of veratryl alcihol. Paszcynski A.;R. L. Crawford.
  106. Arch. Biochem. Biophys. v.244 Comparison of ligninase-I and peroxidase-M2 form the white-rot fungus Phanerochaete chrysosporium. Paszczynski A.;V-B Huynh;R. L. Crawford.
  107. J. Bacteriol. v.174 Heterogeneity and regulation of manganese peroxidases form Phanerochaete chrysosporium. Pease E. A.;M. Tien.
  108. Arch. Biochem. Biophys. v.288 OIxidation of methoxybenzenes by manganese peroxidase and by Mn^{3+}. Popp J. L.;T. K. kirk.
  109. J. Biol. Chem. v.268 Crystallographic refinement of lignin peroxidase at 2 angstrom. Poulos T. L.;S. L. Edwards;H. Wariishi;M. H. Gold.
  110. Biochemistry v.29 Lignin peroxidase oxidation of Mn^{2+} in the presence of verartyl alcohol, malonic or oxalic, and oxygen. Popp J. L.;B. kalyanaraman;T. K. kirk.
  111. Arch. Biochem. Biophys. v.320 Reductions catalyzed by a quinone and peroxidases form Phanerochaete chrysosporium. Rasmussen S. J.;N. Chung;A. Khindaria;T. A. Grover;S. D. Aust
  112. Appl. Environ. microbiol. v.50 Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius tremellosus. Reid I. D.
  113. J. Microbiol. Biotechnol. v.5 Induction and stabilization of lignin peroxidase form Phanerochaete chrysosporium. Sang B. I.;Y. H. Kim;Y. J. Yoo.
  114. Recl. Trav. Chim. psys-Bas. v.109 On chemistry of lignin biodegradation. Schoemaker H. E.
  115. Biochem. Biophys. v.191 Reduction of Ccl₄ to the trichloromethtl radical by lignin peroxidase H2 form Phanerochaete chrysosporium. Shah m. M.;T. A. Grover;S. D. Aust.
  116. J. Biol. Chem. v.267 On the mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase h2 by EDTA. Shah M. M.;T. A. Grover;S. D. Aust.
  117. Toxicol. Lett. v.64 no.65 use of white-rot fungus in the degradation of envrironmental chemicals. Shah M. M.;D. P. Barr;N. Chung;S. D. Aust.
  118. arch. Biochem. Biophys. v.290 Mrtabolism of cyanide by Phanerochaete chrysosporium. Shah M. M.;T. a. Grover;S. D. Aust.
  119. Can. J. Microbiol. v.13 Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii Fungi culture filtrate for sugar production. shewale J. G.;J. C. Sadana.
  120. FEMS Microbiol. Rev. v.13 a PROPOSED ROLE OF OXALIC ACID IN WOOD DECAY SYSTEMS OF WOOD-ROTTING BASIDIOMYCETES. sHIMADA m.;t. HATTORI;t. uMEZAWA;t. hIGUCHI;k. uZURA.
  121. FEBS. Lett. v.221 Regiospecfic oxygenations during ring cleavage of a secondary metabolite, 3,4-dimethoxybenzyl alcohol catlayzed by lignin peroxidase. Shimada M.;T. hattroi;Y. Akamatsu;T. Hattori.
  122. J. Microbiol. Biotechnol. v.8 Identification of multiple active forms in cellulase-xylanase of Aspergillus sp. 8-17 by active ataining. Shin P. K.;E. J. Jung.
  123. J. Microbiol. Biotechnol. v.9 Effects of various parameters on biodegradation of degradable polymers in soil. Shin P. K.;E. J. Jung.
  124. Appl. environ. Microbiol. v.58 Cell surface redox potential as a mechanism of defense against photosensitiaers in fungi. Sollod C. C.;A. E. Jrnns;M. E. Daub.
  125. Biochem. Biophys. v.192 Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Stahl J. D.;S. D. Aust.
  126. Biophys. v.192 Metabolism and detoxication of TNT by Phanerochaete chrysosporium. Stahl J. D.;S. D. Aust.
  127. Biochemistry v.34 The effect of manganese on the oxidation of chemicals by lignin peroxidase. sutherland G. R. J.;A. Khindaria;N. Chung;S. D. Aust.
  128. Eur. J. Biochem. v.265 Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase. ten Have P.;R. G. de Thouars;H. J. Swarts;J. A. Field.
  129. Appl. Environ. Microbiol. v.64 2-Chloro-1,4-dimethoxybenzene as a novel catalytic cofactor for oxidation of anisyl alcohol by lignin peroxidase. Teunissen P. J. M.;J. A. Field.
  130. J. Biol. Chem. v.272 Oxidation of 4-methoxybenzene aid by lgnin peroxidase. Mediation by veratryl alcohol. Tien M.;D. B. Ma.
  131. CRC Crit. v.15 Properties of ligninase form Phanerochaete chrysosporium. and their possible applications. Tien M.
  132. Proc. Natl. Acad. v.81 Lignin-degrading enzyme form Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H₂O₂-requiring oxygenase. Tien M.;T. K. Kirk.
  133. Burds. Science. v.221 Lignin-degrading enzyme form the hymenomycetes Phanerochaete chrysosporium Tien M.;T. K. Kirk.
  134. Arch. Biochem. Biophys. v.293 Inhibition of veratryl alcohol oxidase activity of lignin peroxidase H2 by 3-amino-1,2,4-triazole. Tuisel H.;T. A. Grover;J. A. bumpus.
  135. Arch. Biochem. Biophys. v.279 Lignin peroxidase H2 form Phanerochaete chrysosporium: Purication, characterization and stability to temperature and pH. Tuisel H.;R. Sinclair;J. A. Bumpus;W. Ashbaugh;B. J. Brock;S. D. Aust.
  136. Appl. microbiol. Biotechnol. v.38 Isolation and characterization of subsituted 4-hydroxy-cyclohex-2-enones as metabolites of 3,4-dimethoxybenzyl alcohol and its methyl ether in ligninolytic cultures of Phanerochaete chrysosporium. Tuor U. M.;H. E. Schoemaker;M. S. A. leisola;H. W. H. Schmit.
  137. Appl. Environ. Microbiol. v.45 Rapid degradation of isolated lignins by Phanerochaete chrysosporium: Bioaltering lignin to commercial products. Ulmer D. C.;M. S. A. leisola;B. H. Schmidt;A. Fiechter.
  138. FEBS Lett. v.192 Role of guaiacol in the degradation of arylglycerol-beta-guaiacyl ether by Phanerochaete chrysosporium. Umezawa T.;T. higuchi.
  139. J. bacteriol. v.173 Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. Valli K.;M. H. Gold.
  140. Biochemistry v.29 Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: Role of veratryl alcohol in lignin biodegradation. Valli K.;H. Wariishi;M. H. Gold.
  141. Phytochemistry v.14 Further observations on phenylalanine ammonia-lyase activity in fungi. Vance C. P.;R. J. Bandoni;G. H. N. Towers.
  142. Environ. Sci. Technol. v.49 Abiotic and biotic transformations of 1.1.1-trichloroethane under methanogenic conditions. Vogel T. M.;P. L. mcCarty.
  143. Appl. Microbiol. Biotechnol. v.29 Comparison of ligninolytic activities of selected white-rot fungi. Waldner R.;M. S. A. Leisola;A. Fiechter.
  144. J. Biol. Chem. v.267 Mangans(Ⅱ) oxidation by manganese peroxidase form the basidiomycete Phanerochaete chrysosporium: Kinetic mechanism and role of chelators. Warishi H.;K. Valli;M. H. Gold.
  145. J. Biol. Chem. v.266 Reactions of lignin peroxidase compounds Ⅰ and Ⅱ with veratryl alcohol: Transient-state Kinetic characterzation. Wariishi H.;J. Huang;H. B. Dunford;M. H. Gold.
  146. Biochem. Biophry. v.176 In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Wariishi H.;K. Valli;M. H. Gold.
  147. J. biol. Chem. v.265 Lignin peroxidase compoind Ⅲ-mechanism of formation and decomposition. Wariishi H.;M. H. Gold.
  148. FEBS Lett. v.243 Lignin peroxidase compound Ⅲ: formation, inactivation, and conversion to the native enzyme. Wariishi H.;M. H. Gold.
  149. J. Microbiol. Biotechnol. v.8 Cometabolic removal of xylene isomrs by Alcaligenes xylosoxidans Y234. Yeom S.-H.;J.-H. Lee;Y. J. Yoo.
  150. J. Microbiol. Biotechnol. v.9 Cellulase Producrion in fed-batch culture by Tricoderma reesei Rut C30. Yu X.-B.;H. S. Yun;Y.-M. Koo.
  151. J. Microbiol. Biotechnol. v.8 Production of cellulase by Tricoderma reesei Rut C30 in a batch fermenter. Yu X.-B.;H. S. Yun;Y.-M. Koo.
  152. J. Microbiol. Biotechnol. v.8 Production of cellulase by Tricoderma reesei Rut C30 in wheat bran-containing media. Yu X.-B.;H. S. Yun;Y.-M. Koo.
  153. J. Microbiol. Biotechnol. v.8 Production of cellulase by Tricoderma reesei Rut C30 in wheat brancontaining media Yu,X.B.;H.S.Yun;Y.M.Koo