Browse > Article
http://dx.doi.org/10.5658/WOOD.2013.41.1.19

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems  

Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, Ho-Yong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Jang, Soo-Kyeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.41, no.1, 2013 , pp. 19-32 More about this Journal
Abstract
In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.
Keywords
white rot fungi; ligninolytic enzyme systems; MnP; laccase; organosolv lignin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 장판식, 노봉수, 유상호, 김묘정, 김영완. 2010. 제6장 효소의 생산, 추출 및 정제. in: 이해하기 쉬운 식품효소공학, 수학사. 서울, 208-212.
2 홍창영, 곽기섭, 이수연, 김선홍, 최인규. 2010. 폴리염화 비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석. 목재공학, 38(6): 586-578.
3 Baldrian, P. and J. Gabriel. 2006. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS microbiology letters, 206(1): 69-74.
4 Beaudette, L. A., S. Davies, P. M. Fedorak, O. P. Ward, and M. A. Pickard. 1998. Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Applied and environmental microbiology, 64(6): 2020-2025.
5 Bonnarme, P. and T. W. Jeffries. 1990. Mn (II) regulation of lignin peroxidases and manganesedependent peroxidases from lignin-degrading white rot fungi. Applied and environmental microbiology, 56(1): 210-217.
6 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1): 248-254.   DOI   ScienceOn
7 Buswell, J. A., Y. Cai, and S. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS microbiology letters, 128(1): 81-87.   DOI
8 De Jong, E., F. P. De Vries, J. A. Field, R. P. van der Zwan, and J. A. M. de Bont. 1992. Isolation and screening of basidiomycetes with high peroxidative activity. Mycological Research, 96(12):1098-1104.   DOI
9 Faraco, V., P. Giardina, and G. Sannia. 2003. Metalresponsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149(8): 2155-2162.   DOI   ScienceOn
10 Fenn, P., S. Choi, and T. K. Kirk. 1981. Ligninolytic activity of Phanerochaete chrysosporium: Physiology of suppression by $NH4^{+}$ and l-glutamate. Archives of Microbiology, 130(1): 66-71.   DOI
11 Fenn, P., and T. Kent Kirk. 1981. Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130(1): 59-65.   DOI
12 Glenn, J. K., and M. H. Gold. 1983. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology, 45(6): 1741-1747.
13 Hamelinck, C. N., G. Hooijdonk, and A. P. C. Faaij. 2005. Ethanol from lignocellulosic biomass: techno- economic performance in short-, middle-and long-term. Biomass and Bioenergy, 28(4): 384-410.   DOI   ScienceOn
14 Hammel, K. E., K. A. Jensen Jr., M. D. Mozuch, L. L. Landucci, M. Tien, and E. A. Pease. 1993. Ligninolysis by a purified lignin peroxidase. Journal of Biological Chemistry, 268(17): 12274-12281.
15 Hynes, M. 1974. Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. Journal of bacteriology, 120(3): 1116-1123.
16 Keyser, P., T. Kirk, and J. Zeikus. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of bacteriology, 135(3): 790-797.
17 Machado, K. M. G., D. R. Matheus, V. L. R. Bononi, 2005. Ligninolytic enzymes production and remazol brilliant blue R decolorization by tropical brazilian basidiomycetes fungi. Brazilian Journal of microbiology, 36(3): 246-252.   DOI   ScienceOn
18 Krcmar, P., A. Kubatova, J. Votruba, P. Erbanova, Novotn, and V. Sasek. 1999. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology, 15(2): 269-276.   DOI   ScienceOn
19 Lee, S. 2005. Biodegradation of Dibutyl and Di (2-ethylhexyl) Phthalates by White Rot Fungus, Polyporus brumalis. in: Department of forest sciences, Vol. Ph. D. Thesis, Seoul National University. Seoul.
20 Lee, S. M., J. W. Lee, B. W. Koo, M. K. Kim, D. H. Choi, and I. G. Choi. 2007. Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnology and bioengineering, 97(6): 1516-1522.   DOI   ScienceOn
21 Martinez, A. T., M. Speranza, F. J. Ruiz Duenas, P. Ferreira, S. Camarero, F. Guillen, M. J. Martinez, A. Gutierrez, and J. C. Río, 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International microbiology, 8(3): 195-204.
22 Mason, J. E. 2007. World energy analysis: $H_{2}$ now or later? Energy Policy, 35(2): 1315-1329.   DOI   ScienceOn
23 Nerud, F., Z. Zouchova, and Z. Misurcova, 1991. Ligninolytic properties of different white‐rot fungi. Biotechnology letters, 13(9): 657-660.   DOI
24 Novotny, C., B. Rawal, M. Bhatt, M. Patel, V. Sasek, and H. P. Molitoris. 2001. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. Journal of biotechnology, 89(2): 113-122.   DOI   ScienceOn
25 Stewart, D. 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial crops and products, 27(2): 202-207.   DOI   ScienceOn
26 Pointing, S. 2001. Feasibility of bioremediation by white‐rot fungi. Applied microbiology and biotechnology, 57(1): 20-33.   DOI   ScienceOn
27 Sahoo, S., M. O. Seydibeyoglu, A. Mohanty, M. Misra. 2011. Characterization of industrial lignins for their utilization in future value added applications. Biomass and bioenergy, 35(10): 4230-4237.   DOI   ScienceOn
28 Schmidt, O. 2006. Wood cell wall degradation. in: Wood and Tree fungi (Ed.) D. Czeschlik, Springer ‐Verlag Berlin Heidelberg, pp. 99-107.
29 Tekere, M., A. Mswaka, R. Zvauya, J. Read. 2001. Growth, dye degradation and ligninolytic activ ity studies on Zimbabwean white rot fungi. Enzyme and Microbial technology, 28(4): 420-426.   DOI   ScienceOn
30 Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Critical reviews in microbiology, 15(2): 141-168.   DOI
31 Vyas, B., H. P. Molitoris. 1995. Involvement of an extracellular $H_{2}O_{2}$-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Applied and environmental microbiology, 61(11): 3919∼3927.
32 Wariishi, H., K. Valli, and M. H. Gold. 1991. depolymerization of lignin by manganese peroxidase of. Biochemical and biophysical research communications, 176(1): 269-275.   DOI   ScienceOn
33 Wong, D. W. S. 2009. Structure and action mechanism of ligninolytic enzymes. Applied biochemistry and biotechnology, 157(2): 174-209.   DOI   ScienceOn