Browse > Article

Effect of $Zn^{2+}$ and Ferulic Acid on Laccase and Manganese Peroxidase Production by Funalia trogii  

Park, Chul-Hwan (Green Engineering Team, Korea Institute of Industrial Technology(KITECH))
Han, Eun-Jung (Green Engineering Team, Korea Institute of Industrial Technology(KITECH))
Lee, Byung-Hwan (Department of Chemical System Engineering, Keimyung University)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Sang-Yong (Green Engineering Team, Korea Institute of Industrial Technology(KITECH))
Publication Information
KSBB Journal / v.21, no.2, 2006 , pp. 85-89 More about this Journal
Abstract
Typical property of the white-rot fungi is their ability to degrade lignin and other aromatic compounds with non-specific extracellular enzyme. In this work, the modification of the strain(Funalia trogii ATCC 200800) and the culture condition was performed to enhance enzyme productivity. Single cell was separated by the protoplasts formation and several putative laccase and manganese peroxidase inducers were tested. By adopting the modified strain, enzyme productivity increased comparing with that of the original strain. Extracellular enzyme formation was highly stimulated by the addition of copper and various aromatic compounds in the glucose-based culture medium.
Keywords
White-rot fungi; enzyme; protoplasts; enzyme inducer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, S., C. Park, T.-H. Kim, J. Lee, and S.-W. Kim (2003), COD reduction and decolorization of textile effluent using a combined process, J. Biosci. Bioeng. 95, 102-105   DOI
2 Robinson, T., B. Chandran, and P. Nigam (2001), Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes, Enzyme Microb. Technol. 29, 575-579   DOI   ScienceOn
3 Lilly, W. W., G. J. Wallweber, and T. A. Lukefahr (1992), Cadmium absorption and its effects on growth and mycelial morphology of the basidiomycete fungus Schizophyllum commune, Microbios. 72, 227-237
4 Ichikawa, T., M. I. Date, and A. Ozak (1971), Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method, Folia Microbiol. 16, 218-224   DOI
5 Eggert, C., U. Temp, and K. E. Eriksson (1996), The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151-1158
6 Criquet, S., S. Tagger, G. Vogt, G. Iacazio, and J. L. Petit (1999), Laccase activity of forest litter, Soil Biol. Biochem. 31, 1239-1244   DOI   ScienceOn
7 Gold, M. H., M. Kuwahara, A. A. Chiu, and J. K. Glenn (1984), Purification and characterization of an extracellular $H_2O_2$-requiring diarylpropane oxygenase from the white-rot basidiomycete, Phanerochaete chrysosporium, Arch. Biochem. Biophys. 234, 353-362   DOI   ScienceOn
8 Baldrian, P. and J. Gabriel (2002), Copper and cadmium increase laccase activity in Pleurotus ostreatus, FEMS Microbiol. Lett. 206, 69-74
9 Faison, B. D. and T. K. Kirk (1985), Factors involved in the regulation of a ligninase activity in Phanerochaete Chrysosporium, Appl. Environ. Microbiol. 49, 299-304
10 Kapdan, I., F. Kargi, G. McMullan, and R. Marrchant (2000), Comparison of white-rot fungi cultures for decolorization of textile dyestuffs, Bioprocess Eng. 22, 347-351   DOI
11 Lin, S. H. and F. C. Peng (1994), Treatment of textile wastewater by electrochemical methods, Water Res. 28, 277-282   DOI   ScienceOn
12 Baldrian, P. (2003), Interactions of heavy metals with white-rot fungi, Enzyme Microb. Technol. 32, 78-91   DOI   ScienceOn
13 Palmieri, G., P. Giarduna, C. Bianco, B. Fontanella, and G. Sammia (2000), Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus, Appl. Environ. Microbiol. 63, 3444-3450
14 Galhaup C. and D. Haltrich (2001), Enhanced formation of laccase activity by the white-rot fungus Trametes pubescebs in the presence of copper, Appl. Microbiol. Biotechnol. 56, 225-232   DOI
15 Fu, Y. and T. Viraraghavan (2001), Fungal decolorization of dye wastewaters: a review, Biores. Technol. 79, 251-262   DOI   ScienceOn
16 Park, C., Y. Lee, T. H. Kim, M. Lee, B. Lee, J. Lee, and S. Kim (2003), Enzyme decolorization of various dyes by Trametes versicolor KCTC 16781, Korean J. Biotechnol. Bioeng. 18, 398-403
17 Arora, D. S., M. Chander, and P. K. Gill (2002), Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective of wheat straw, Int. Biodeter. Biodegrad. 50, 115-120   DOI   ScienceOn
18 Calabro, V., E. Drioli, and F. Matera (1991), Membrane distillation in the textile wastewater treatment, Desalination. 83, 209-224   DOI   ScienceOn
19 Shicheng, C., M. Dengbo, G. Wei, and A. B. John (2003), Induction of laccase activity in the edible straw mushroom Volvariella volvacea, FEMS Microbiol. Lett. 218, 143-148   DOI
20 Soden, D. M. and A. D. W. Dobson (2001), Differential regulation of laccase gene expression in Pleurotus sajor-caju, Microbiol. 147, 1755-1763   DOI
21 Ollikka, P., K. Alhonmaki, V. Leppanen, T. Glumoff, T. Raijola, and I. Suominen (1993), Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 4010-4016
22 Ramakrishna, K. R. and T. Viraraghavan (1997), Dye removal using low cost adsorbents, Water Sci. Technol. 36, 189-196
23 Kirby, N., R. Marchant, and G. McMullan (2000), Decolorisations of synthetic textile dyes by Phlebia tremllosa, FEMS Microbiol. Lett. 188, 93-96   DOI
24 Rodriguez, E., M. A. Pickard, and R. Vazquez-Duhalt (1999), Industrial dye decolorization by laccase from ligninolytic fungi, Curr. Microbiol. 38, 27-32   DOI
25 Zhang, F.-M., J. S. Knapp, and K. N. Tapley (1999), Decolourisation of cotton bleaching effluent with wood rotting fungus, Water Res. 33, 919-928   DOI   ScienceOn
26 Young, L. and J. Yu (1997), Ligninase-catalysed decolorization of synthetic dyes, Water Res. 31, 1187-1193   DOI   ScienceOn