• 제목/요약/키워드: Manganese peroxidase

검색결과 95건 처리시간 0.022초

Funalia trogii에 의한 Laccase와 Manganese Peroxidase의 생산시 $Zn^{2+}$ 및 Ferulic Acid가 미치는 영향 (Effect of $Zn^{2+}$ and Ferulic Acid on Laccase and Manganese Peroxidase Production by Funalia trogii)

  • 박철환;한은정;이병환;이진원;김상용
    • KSBB Journal
    • /
    • 제21권2호
    • /
    • pp.85-89
    • /
    • 2006
  • F. trogii ATCC 200800으로부터 원형질체 분리를 통해 단일균주들을 선별하였으며, 선별된 균주들의 고체배양 및 agar plug assay를 통해 효소생산을 위한 균주를 대량 선별하였다. Agar plug assay를 통해 4일 동안 100여종 이상의 균주를 동시에 배양, 분석이 가능하였으며, 염료분해환을 형성하지 않은 균주는 액체배양 확인 결과 MnP의 생산이 거의 일어나지 않는 것으로 나타났다. 이러한 방법으로 선별된 균주를 이용하여 UV 돌연변이를 통해 모균주로부터 유전적 변이를 유도해 새로운 균주선별을 시도하였으며, 이로부터 모균주와 비교하여 효소생산성이 향상되고 안정성이 증대된 균주를 선별할 수 있었다. 모균주와 선별된 균주의 명확한 유전적 차이를 규명하기보다는 배양시 형태학적 특성이 상이함을 확인하였다. 또한, 선별된 균주를 이용하여 배양액내에 다양한 종류의 inducer를 첨가에 따라 효소생산에 미치는 영향을 확인하였다. 과량의 inducer 물질이 첨가될 경우, 균체성장은 물론 효소생산성도 크게 떨어졌으며, 균체성장이 어느 정도 이루어진 상태 즉, 이차대사가 이루어지는 시점에서 inducer를 첨가할 경우 그 효율이 최대였으며, 동시에 inducer를 첨가할 경우 보다 미량씩 일정량을 나누어 주입할 경우 효소생산에 더 유리한 것으로 나타났다.

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

  • Sarkar, Shuranjan;Moon, Do-Hyun;Lah, Myoung-Soo;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3173-3179
    • /
    • 2010
  • New complex $[Mn(II)H_{1.5}L]_2[Mn(II)H_3L]_2(ClO_4)_5{\cdot}3H_2O$ (1), where $H_3L$ is tris {2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of $[Mn(II)H_{1.5}L]^{0.5+}$ complex ions are extended to build a 2D puckered network with trigonal voids. $[Mn(II)H_3L]^{2+}$ complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of $ABTS^{+{\cdot}}$ was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.

송곳니구름버섯(Irpex zonatus) BN2에 의한 아조계, 트리페닐메탄계 및 헤테로싸이클릭계 염료의 탈색 (Decolorization of Azo, Triphenylmethane and Heterocyclic Dyes by Irpex zonatus BN2)

  • 윤경하;최양순
    • 한국균학회지
    • /
    • 제26권1호통권84호
    • /
    • pp.8-15
    • /
    • 1998
  • 우리 나라 자연 환경에서 분리 동정된 송곳니구름버섯(Irpex zonatus) BN2 균주의 리그닌분해효소활성과 아조(azo)계, 트리페닐메탄(triphenylmethane)계 및 헤테로싸이클릭(heterocyclic)계에 속하는 몇몇 염료의 탈색능을 조사하였다. 송곳니구름버섯 BN2 균주는 lignin peroxidase(LiP)와 veratryl alcohol oxidase(VAO)를 생산하지 않고 laccase와 manganese dependent peroxidase(MnP)를 생산했다. MnP는 배양 3일부터 생산되었으나 효소활성은 매우 낮았다. 반면 laccase는 배양 초기부터 지속적으로 생산되었고 활성은 대단히 높았다. 균주를 염료와 함께 10일간 배양했을 때 아조계 염료인 orange II, orange G, tropaeolin O 및 congo red의 탈색율은 각각 98.0%, 97.4%, 99.0% 및 95.3%로 나타났고 트리페닐메탄계 염료인 basic fuchsin, malachite green 및 crystal violet 들은 98.5%, 95.7% 및 99.4%로, 헤테로싸이클릭계 염료에 속하는 eosin Y, toludine blue, methyl blue 및 azur B는 각각 97.4% 98.7%, 99.9% 및 94.0%의 탈색율을 보였다. 송곳니구름버섯 BN2 균주에 의한 염료의 탈색은 주로 laccase에 의하여 이루어진다고 생각된다.

  • PDF