DOI QR코드

DOI QR Code

Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

  • Sarkar, Shuranjan (Department of Chemistry, Kyungpook National University) ;
  • Moon, Do-Hyun (Pohang Accelerator Laboratory) ;
  • Lah, Myoung-Soo (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology) ;
  • Lee, Hong-In (Department of Chemistry, Kyungpook National University)
  • Received : 2010.08.09
  • Accepted : 2010.09.04
  • Published : 2010.11.20

Abstract

New complex $[Mn(II)H_{1.5}L]_2[Mn(II)H_3L]_2(ClO_4)_5{\cdot}3H_2O$ (1), where $H_3L$ is tris {2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of $[Mn(II)H_{1.5}L]^{0.5+}$ complex ions are extended to build a 2D puckered network with trigonal voids. $[Mn(II)H_3L]^{2+}$ complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of $ABTS^{+{\cdot}}$ was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.

Keywords

References

  1. Dunford, H. B. Heme Peroxidase; John Wiley & Sons, Inc.: New York, 1999.
  2. Glenn, J. K.; Gold, M. H. Arch. Biochem. Biophys. 1985, 242, 329. https://doi.org/10.1016/0003-9861(85)90217-6
  3. Glenn, J. K.; Akileswaran, L.; Gold, M. H. Arch. Biochem. Biophys. 1986, 251, 688. https://doi.org/10.1016/0003-9861(86)90378-4
  4. Sundaramoorthy, M.; Kishi, K.; Gold, M. H.; Poulos, T. L. J. Biol. Chem. 1994, 269, 32759.
  5. Zou, P. J.; Schrempf, H. Eur. J. Biochem. 2000, 267, 2840. https://doi.org/10.1046/j.1432-1327.2000.01259.x
  6. Okrasa, K.; Kazlauskas, R. J. Chem. Eur. J. 2006, 12, 1587. https://doi.org/10.1002/chem.200501413
  7. Maneiro, M.; Bermejo, M. R.; Fernandez, M. I.; Gomez-Forneas, E.; Gonzalez-Noya, A. M.; Tyryshkin, A. M. New J. Chem. 2003, 27, 727. https://doi.org/10.1039/b210738d
  8. Bermejo, M. R.; Fernandez, M. I.; Gonzalez-Noya, A. M.; Maneiro, M.; Pedrido, R.; Rodriguez, M. J.; Garcia-Monteagudo, J. C.; Donnadieu, B. J. Inorg. Biochem. 2006, 100, 1470. https://doi.org/10.1016/j.jinorgbio.2006.04.012
  9. Maneiro, M.; Bermejo, M. R.; Sousa, A.; Fondo, M.; González, A. M.; Sousa-Pedrares, A.; McAuliffe, C. A. Polyhedron 2000, 19, 47. https://doi.org/10.1016/S0277-5387(99)00321-6
  10. Guilherme, L. R.; Drechsel, S. M.; Tavares, F.; Cunha, C. J. D.; Castaman, S. T.; Nakagaki, S.; Vencato, I.; Bortoluzzi, A. J. J. Mol. Catal. A: Chem. 2007, 269, 22. https://doi.org/10.1016/j.molcata.2006.12.044
  11. Dismukes, G. C. Chem. Rev. 1996, 96, 2909. https://doi.org/10.1021/cr950053c
  12. Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. J. Chem. Rev. 2004, 104, 903. https://doi.org/10.1021/cr020627v
  13. Katsuki, I.; Motoda, Y.; Sunatsuki, Y.; Matsumoto, N.; Nakashima, T.; Kojima, M. J. Am. Chem. Soc. 2002, 124, 629. https://doi.org/10.1021/ja0123960
  14. Sunatsuki, Y.; Ikuta, Y.; Matsumoto, N.; Ohta, H.; Kojima, M.; Iijima, S.; Hayami, S.; Maeda, Y.; Kaizaki, S.; Dahan, F.; Tuchagues, J.-P. Angew. Chem., Int. Ed. Engl. 2003, 42, 1614. https://doi.org/10.1002/anie.200250399
  15. Ikuta, Y.; Ooidemizu, M.; Yamahata, Y.; Yamada, M.; Osa, S.; Matsumoto, N.; Iijima, S.; Sunatsuki, Y.; Kojima, M.; Dahan, F.; Tuchagues, J.-P. Inorg. Chem. 2003, 42, 7001. https://doi.org/10.1021/ic034495f
  16. Brewer, C.; Brewer, G.; Luckett, C.; Marbury, G. S.; Viragh, C.; Beatty, A. M.; Scheidt, W. R. Inorg. Chem. 2004, 43, 2402. https://doi.org/10.1021/ic0351747
  17. Sunatsuki, Y.; Ohta, H.; Kojima, M.; Ikuta, Y.; Goto, Y.; Matsumoto, N.; Iijima, S.; Akashi, H.; Kaizaki, S.; Dahan, F.; Tuchagues, J.-P. Inorg. Chem. 2004, 43, 4154. https://doi.org/10.1021/ic0498384
  18. Lambert, F.; Policar, C.; Durot, S.; Cesario, M.; Yuwei, L.; Korri- Youssoufi, H.; Keita, B.; Nadjo, L. Inorg. Chem. 2004, 43, 4178. https://doi.org/10.1021/ic0498687
  19. He, H.; Rodgers, K. R.; Arif, A. M. J. Inorg. Biochem. 2004, 98, 667. https://doi.org/10.1016/j.jinorgbio.2004.02.018
  20. Yamaguchi, T.; Harada, K.; Sunatsuki, Y.; Kojima, M.; Nakajima, K.; Matsumoto, N. Eur. J. Inorg. Chem. 2006, 3236.
  21. Brewer, C.; Brewer, G.; Butcher, R. J.; Carpenter, E. F.; Cuenca, L.; Noll, B. C.; Scheidt, W. R.; Viragh, C.; Zavalij, P. Y.; Zielaski, D. Dalton Trans. 2006, 1009.
  22. Zipplies, M. F.; Lee, W. A.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 4433. https://doi.org/10.1021/ja00275a033
  23. Arvai, A. J.; Nielsen, C. ADSC Quantum-210 ADX Program, Area Detector System Corporation, Poway, CA, USA, 1983.
  24. Otwinowski, Z.; Minor, W. In Methods in Enzymology; Carter, J. C. W., Sweet, R. M., Eds.; Academic Press: New York, 1997; 276, Part A, 307.
  25. Sheldrick, G. M. SHELXTL-PLUS, Crystal Structure Analysis Package, Bruker Analytical X-Ray, Madison, WI, USA, 1997.
  26. Mimura, M.; Matsuo, T.; Motoda, Y.; Matsumoto, N.; Nakashima, T.; Kojima, M. Chem. Lett. 1998, 27, 691.
  27. Shannon, R. D.; Prewitt, C. T. Acta Crysts. B 1969, 25, 925 https://doi.org/10.1107/S0567740869003220
  28. Shannon, R. D. Acta Crysts. A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551
  29. Bermejo, M. R.; Fernandez, M. I.; Gomez-Forneas, E.; Gonzalez- Noya, A.; Maneiro, M. R.; Pedrido, Rodriguez, M. J. Eur. J. Inorg. Chem. 2007, 24, 3789.
  30. Naruta, Y.; Maruyama, K. J. Am. Chem. Soc. 1991, 113, 3595. https://doi.org/10.1021/ja00009a058
  31. Balasubramanian, P. N.; Schmidt, E. S.; Bruice, T. C. J. Am. Chem. Soc. 1987, 109, 7865. https://doi.org/10.1021/ja00259a040
  32. Balasubramanian, P. N.; Sinha, A.; Bruice, T. C. J. Am. Chem. Soc. 1987, 109, 1456. https://doi.org/10.1021/ja00239a027
  33. Lessa, J. A.; Horn, A., Jr.; Bull, E. S.; Rocha, M. R.; Benassi, M.; Catharino, R. R.; Eberlin, M. N.; Casellato, A.; Noble, C. J.; Hanson, G. R.; Schenk, G.; Silva, G. C.; Antunes, O. A. C.; Fernandes, C. Inorg. Chem. 2009, 48, 4569. https://doi.org/10.1021/ic801969c
  34. Naruta, Y.; Sasayama, M.-A.; Sasaki, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1839. https://doi.org/10.1002/anie.199418391

Cited by

  1. Structural Evidence of Spin State Selection and Spin Crossover Behavior of Tripodal Schiff Base Complexes of tris(2-aminoethyl)amine and Related Tripodal Amines vol.6, pp.2, 2010, https://doi.org/10.3390/magnetochemistry6020028
  2. Catecholase Activities of Copper( II ) Complexes With N 4 Ligands vol.42, pp.7, 2010, https://doi.org/10.1002/bkcs.12303