KSII Transactions on Internet and Information Systems (TIIS)
/
제13권7호
/
pp.3654-3670
/
2019
This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.
웹에 존재하는 악성코드 배포 네트워크에는 악성코드 배포를 위해 핵심 역할을 수행하는 중심 노드가 있다. 이노드를 찾아 차단하면 악성코드 전파를 효과적으로 차단할 수 있다. 본 연구에서는 복잡계 네트워크에서 위험 분석이 적용된 centrality 검색 방법을 제안하였고, 이 방식을 통해 악성코드 배포 네트워크 내에서 핵심노드를 찾는 방법을 소개한다. 그 외에, 정상 네트워크와 악성 네트워트는 in-degree와 out-degree 측면에서 큰 차이가 있고, 네트워크 레이아웃 측면에서도 서로 다르다. 이 특징을 통해 우리는 악성과 정상 네트워크를 분별할 수 있다.
최근 다양한 형태의 악성코드 등장으로 인해 기존의 정적 분석은 많은 한계를 노출하고 있다. 정적분석은 (악성)코드를 실제로 실행하지 않고 원시 코드나 목적 코드를 가지고 코드나 프로그램의 구조를 분석하는 것을 의미한다. 한편 정보보안 분야에서의 동적 분석이란 일반적으로 (악성)코드를 직접 실행하여 분석하는 형태로 프로그램의 실행 플로우를 파악하기 위해 (악성)코드의 실행 전후 상태를 비교·조사하여 분석하는 형태를 의미한다. 그러나 동적 분석을 위해서는 막대한 양의 데이터와 로그를 분석해야 하며 모든 실행 플로우를 실제로 저장하기도 어려웠다. 본 논문에서는 윈도우 환경(윈도우 10 R5 이상)에서 2세대 PT를 기반으로 악성코드 탐지 및 실시간 다중 동적 분석을 수행하는 시스템의 전처리기 구조를 제안하였고 이를 구현하였다.
정보 통신 기술의 발달로 인해 매년 신종/변종 악성코드가 급격히 증가하고 있으며 최근 사물 인터넷과 클라우드 컴퓨팅 기술의 발전으로 다양한 형태의 악성코드가 확산되고 있는 추세이다. 본 논문에서는 운영체제 환경에 관계없이 활용 가능하며 악성행위와 관련된 라이브러리 호출 정보를 나타내는 문자열 정보를 기반으로 한 악성코드 분석 기법을 제안한다. 공격자는 기존 코드를 활용하거나 자동화된 제작 도구를 사용하여 악성코드를 손쉽게 제작할 수 있으며 생성된 악성코드는 기존 악성코드와 유사한 방식으로 동작하게 된다. 악성 코드에서 추출 할 수 있는 대부분의 문자열은 악성 동작과 밀접한 관련이 있는 정보로 구성되어 있기 때문에 텍스트 마이닝 기반 방식을 활용하여 데이터 특징에 가중치를 부여해 악성코드 분석을 위한 효과적인 Feature로 가공한다. 가공된 데이터를 기반으로 악성여부 탐지와 악성 그룹분류에 대한 실험을 수행하기 위해 다양한 Machine Learning 알고리즘을 이용해 모델을 구축한다. 데이터는 Windows 및 Linux 운영체제에 사용되는 파일 모두에 대해 비교 및 검증하였으며 악성탐지에서는 약93.5%의 정확도와 그룹분류에서는 약 90%의 정확도를 도출하였다. 제안된 기법은 악성 그룹을 분류시 각 그룹에 대한 모델을 구축할 필요가 없기 때문에 단일 모델로서 비교적 간단하고 빠르며 운영체제와 독립적이므로 광범위한 응용 분야를 가진다. 또한 문자열 정보는 정적분석을 통해 추출되므로 코드를 직접 실행하는 분석 방법에 비해 신속하게 처리가능하다.
악성코드를 분석하기 위한 기법에는 다양한 방법들이 존재한다. 하지만 기존의 악성코드 분석 기법으로는 악성코드들의 동작들을 정확하게 분석하는 것이 점점 어려워지고 있다. 특히, 분석 시스템들이 악성코드의 안티-디버깅 기술에 의해 감지되기 쉽고, 실행속도 등 여러 가지 한계점을 보임에 따라 이를 해결할 수 있는 분석 기법이 요구되고 있다. 본 논문에서는 동적 코드 분석을 위한 기본 요구사항인 명령어 단위 분석 및 메모리 접근 추적 기능을 제공하는 동적 코드 분석 시스템을 설계 및 구현한다. 그리고 DLL 로딩 추적을 통한 API 호출 정보를 추출하여, 다양한 실행 코드들을 분석 할 수 있는 기반 환경을 구축한다. 제안 시스템은 Intel의 VT 기술을 이용하여 Xen 기반으로 전가상화 환경을 구축하였으며, 게스트에서는 윈도우즈 XP가 동작할 수 있도록 하였다. 제안 시스템을 이용하여 대표적인 악성코드들을 분석해 봄으로써 제안 시스템 각각의 기능들의 활용을 살펴보고, 제안 시스템이 악성코드들을 정확하게 분석 및 탐지함을 보여준다.
International Journal of Advanced Culture Technology
/
제9권3호
/
pp.291-297
/
2021
Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.
IoT (Internet of Things) 장치는 취약한 아이디/비밀번호 사용, 인증되지 않은 펌웨어 업데이트 등 많은 보안 취약점을 보여 악성코드의 공격 대상이 되고 있다. 그러나 CPU 구조의 다양성으로 인해 악성코드 분석 환경 설정과 특징 설계에 어려움이 있다. 본 논문에서는 CPU 구조와 독립된 악성코드의 특징 표현을 위해 실행 파일의 바이트 순서를 이용한 시계열 특징을 설계하고 순환 신경망을 통해 분석한다. 제안하는 특징은 바이트 순서의 부분 엔트로피 계산과 선형 보간을 통한 고정 길이의 시계열 패턴이다. 추출된 특징의 시계열 변화는 RNN과 LSTM으로 학습시켜 분석한다. 실험에서 IoT 악성코드 탐지는 높은 성능을 보였지만, 패밀리 분류는 비교적 성능이 낮았다. 악성코드 패밀리별 엔트로피 패턴을 시각화하여 비교했을 때 Tsunami와 Gafgyt 패밀리가 유사한 패턴을 나타내 분류 성능이 낮아진 것으로 분석되었다. 제안된 악성코드 특징의 데이터 간 시계열 변화 학습에 RNN보다 LSTM이 더 적합하다.
인터넷의 발달로 많은 정보에 쉽게 접근할 수 있게 되었지만, 이에 따라 악의적인 목적을 가진 프로그램의 침입 경로가 다양해졌다. 그리고 전통적인 시그니처 기반 백신은 변종 및 신종 악성코드의 침입을 탐지하기 어렵기 때문에 많은 사용자들이 피해를 입고 있다. 시그니처로 탐지할 수 없는 악성코드는 분석가가 직접 실행시켜 행위를 분석해 볼 수 있지만, 변종의 경우 대부분의 행위가 유사하여 비효율적이라는 문제점이 있다. 본 논문에서는 변종이 대부분의 행위가 유사하다는 것에 착안하여 기존 악성코드와의 행위 유사성을 이용한 탐지 방법을 제안한다. 제안 방법은 변종들이 공통적으로 가지는 행위 대상과 유사한 행위 대상을 갖는 프로그램을 탐지하는 것이다. 1,000개의 악성코드를 이용해 실험한 결과 변종의 경우 높은 유사도를 보이고, 아닐 경우 낮은 유사도를 보여 행위 유사도로 변종을 탐지할 수 있음을 보였다.
2013 국가정보보호백서에 따르면, 2012년 민간분야 침해사고 접수 처리 현황 중 해킹사고는 19,570 건으로 2011년에 비해 67.4%가 증가한 수치이며, 해가 갈수록 증가하고 있다. 이러한 증가의 원인으로는 특히 금전적인 이윤 추구와 감염기법의 다양화 등이 꼽히고 있다. 하지만, 악성코드를 분석 하고 대응하기 위한 전문가 수의 증가 속도보다 악성코드의 발전 속도가 빠르기 때문에, 악성코드로 인한 보안위협에 대응하는데 어려움이 있다. 이에 따라, 악성코드 자동분석 도구에 대한 관심이 높아지고 있다. 본 방법은 악성코드 자동분석의 일환으로 악성코드 DNA 생성을 통한 유사 악성코드 분류방법을 제안한다. 제안하는 기법은 기존 자동 분석도구와는 달리, 악성코드의 특성인자를 추출하여 '악성코드 DNA'를 생성하고, 이를 통한 유사도 계산을 통해 악성코드를 분류한다. 본 기법을 사용함으로써, 전문가의 악성코드 분석 시간 절약 및 정확성을 향상 시켜 줄 수 있고, 신뢰성 있는 사전 지식을 전달할 수 있다.
안드로이드 어플리케이션은 생산성과 게임 등의 다양한 카테고리에 걸쳐 출시되며, 사용자는 개인의 사용 패턴에 따라 다양한 어플리케이션 및 악성코드에 노출된다. 반면 대부분의 분석 엔진은 기존에 존재하는 데이터셋을 활용하며, 주기적인 업데이트가 이루어진다고 해도 사용자의 선호도를 반영하지 않는다. 따라서 알려진 악성코드에 대한 탐지율은 높은 반면, 애드웨어와 같은 유형의 악성코드는 탐지가 어렵다. 또한 기존의 엔진은 서버를 거쳐야 하므로, 추가적인 비용이 발생하며, 사용자는 가용성과 실시간성을 보장받지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 논문에서는 서버와 단 한번만의 통신이 요구되는 on-device 악성코드 분석과 전이학습을 통한 모델 재훈련을 수행하는 분석 시스템을 제안한다. 또한 해당 시스템은 디바이스 내부에서 디컴파일을 포함한 전체 프로세스가 이루어지므로, 서버 시스템에서의 부하를 분산할 수 있다. 이러한 분석 시스템을 구현하여 테스트한 결과, 전이 학습이전 기준 최대 90.3%의 정확도를 얻었으며, Adware 카테고리에 대하여 전이학습을 수행한 뒤 최대 95.1% 의 정확도로, 기존 대비 4.8% 높은 정확도를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.