
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, Jul. 2019 3654
Copyright ⓒ 2019 KSII

Deep Learning in Drebin: Android malware
Image Texture Median Filter Analysis and

Detection

Luo Shi-qi1*, Ni Bo1, Jiang Ping1, Tian Sheng-wei2, Yu Long2, Wang Rui-jin3
1 School of Computer, Hubei Polytechnic University,

No.16, Guiling NorthRoad, XialuDistrict, Huangshi, Hubei 435003 - P.R. China

[e-mail: sq930911@hbpu.edu.cn]
2 School of Information Science and Engineering, Xinjiang University

No.666, Shengli Road, Tianshan District, Urumqi, Xinjiang 830046 - P.R. China

[e-mail: tianshengwei@163.com]
3 School of Computer Science and Engineering, University of Electronic Science and Technology of China

Chengdu, Sichuan, 610054 - P.R. China

[e-mail: ruijinwang@uestc.edu.cn]

*Corresponding author: Luo Shi-qi

Received November 21, 2018; revised January 23, 2018; accepted February 12, 2019; published July 31, 2019

Abstract

This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android
malware on Drebin datasets1. We design a model of “ITMF” combined with Image
Processing of Median Filter (MF) to reflect the similarity of the malware binary file block.
At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to
reflect the potential dynamic activity of malware. In order to ensure the improvement of the
classification accuracy, the above-mentioned features(ITMF feature and MAEVS
feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation
(BP). The experimental results show that the model has an average accuracy rate of 95.43%

1 http://www.sec.cs.tu-bs.de/~danarp/drebin/

This work is partially supported by the National Natural Science Foundation of China(61841301). The Ministry of education of
Humanities and Social Science project(17YJAZH043). The Scientific Research Innovation Project of Education Innovation
Plan for Graduate Students in Xinjiang Uygur Autonomous Region(XJGRI2017007). The Science the Technology Talent
Training Project of Xinjiang Uygur Autonomous Region(QN2016YX0051). The Cernet Next Generation Internet Technology
Innovation Project(NGII20170420). The Natural Science Project of Hubei Provience(2018CFB456,2017CFB745). The
Research Project of Hubei Provincial Department of Education (Q20184504). Guiding Project of the Science and Technology
Program of the Hubei Provincial Department of Education(B2018251).

http://doi.org/10.3837/tiis.2019.07.018 ISSN : 1976-7277

http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B
http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B
http://www.sec.cs.tu-bs.de/%7Edanarp/drebin/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3655

with few false alarms. to Android malicious code, which is significantly higher than 95.2%
of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6%
of ANN.

Keywords: malware, Image Texture Median Filter, Malware Activity Embedding in Vector
Space

1. Introduction

With the rapid development of Internet Technology, malware detection has become the

difficulty and focus of Intrusion Detection System(IDS) in Network Space Security(NSS).
Driven by economic benefits and anti-detection technologies, the number of malware has
grown exponentially.[1][2] At the same time, Varieties of malware are emerging in an
endless stream, which leads to a rising trend in security threat events. In May 2017, a
computer ransomware named WannaCry is spreading worldwide, and has infected more than
100 countries. The most serious areas are concentrated in the America, Europe, Australia,
China is also influenced. Many colleges have been infected and spread to large public
service areas seriously such as airports, customs, and public security networks. Android is
very popular in the field of mobile terminals, which occupies a large market share of mobile
terminals. With the widespread use of Android mobile phones, Android-based malware has
also developed rapidly. How to detect Android malware is particularly critical. At present,
there have been many research progresses in Android malware analysis abroad.
Representative researches include static analysis, dynamic analysis, and machine learning
method.

However, the analysis and detection techniques based on shallow machine learning
methods are mostly based on shallow models. Which have simple functions in the modeling
process and limited ability in the expression of complex functions and classification
problems and generalization ability. The classification accuracy are not high.
 Aiming at problem of low detection and classification accuracy in detection of
classification, this paper uses the method of deep learning to analysis and detect malware.
 It is a proposal that using malware texture fingerprint to express the similarity of the
content of the malware binary file block. At the same time, to improve the detection accuracy,
the ITMF is introduced to reflect the similarity of the malware, and the MAEVS is used to
reflect the malware potentially dynamic activities. Then two types of features have been
merged together. Under the Android mobile terminal, the concept of deep learning have been
applied to solve the problems of malware feature extraction, identification, and detection.

http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B

3656 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

2. Related work

The analysis and detection model of malware usually comprises of two pieces: feature
extraction and classification. The current feature extraction method is usually seperated into
servel types: static analysis[3], dynamic analysis[4], static and dynamic fused analysis[5],
the graphs-based approach[6][7][8][9][10] et.

1) Malware static analysis methods
The static analysis methods mainly include: signature-based, code semantic based, heuristic
scanning techniques.

The signature-based detection[11]: the signature-based detection is a widely used
approach in malware analysis. According to this method, the binary executable files are
transformed to represent hashes which are matched with a database of known malware
samples. Most commercial antivirus software makes use of this mechanism. Such as Norton,
McAfee, and Kaspersky etc. At this stage, these techniques are mainly based on noise
guidance and automatic generation distribution. Therefore early malware samples are shorter
and the morphology is single, this detection method has achieved good results as long as
there is a signature of this malware in the signature database. Malware analysis platforms are
constantly evolving, increasingly malware such as viruses, Trojans, and worms also seriously
affect people's lives. And to evade detection, malware anti-analysis techniques (such as
packing, code obfuscation, information hiding Technology) are also constantly improving its
ability. This will be a big challenge for detection and analysis.

The code-semantics-based[12]: the code-semantics-based analyzes the meaning of the
instructions. In addition, it obtains the flow chart and the functional block diagram of
malware, and to determine whether the program is malicious, it analyzes the functions and
intentions of the program.

The heuristic scanning technique[13]: the heuristic scanning technique is actually an
improvement based on the signature detection method. The main idea of this method is:
when extracting the features of the file to be detected, it is compared with the characteristics
of the signature library's known malware. As long as the match reaches a given threshold, the
file is deemed to contain malware.

Kernel functions analysis: Generally, some kernel functions are called when the malware
is executed, and the calling code of the malware has a great difference from benign. Using
this principle, when scanning a program, you can extract kernel functions from it and the
frequency, and compare it with the known code of the kernel functions in the code library.
This method not only effectively detects known malware but also recognizes variants and
unknown malware. However, it is difficult to capture the dynamic characteristics in the static
analysis of malware, besides, it lacks of monitoring of program behavior.

2) Dynamic analysis methods
The dynamic analysis methods of malware (such as active defense technology[14] and

cloud killing technology[15]) have been used by more security vendors with the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3657

development of anti-malware technology. Dynamic(also name behavioral analysis), which
can monitor the behavior of applications at run-time. It performed by observing the behavior
of the malware while it is actually running on a host system. Such as, TaintDroid,
DroidRanger and DroidScope are dynamic analysis method. But these algorithms spot whole
malicious activities on the smart phone, which involve millions of smartphones at large scale
in practice and takes a lot of spends and time. At present, the dynamic analysis method
monitors the system function at the system application layer and lacks the detection of
memory and registers. It is difficult to detect the kernel-level malware, and it is also a hard
task to ensure the integrity of the analysis.

3)Graphs-based approach
Graphs-based approach mainly contains control-flow graphs, data dependency graphs,

permission event graphs, automated Behavioral Graph Matching. While, these graphs are
checked against manually-crafted specifications to detect malware. Besides, these detectors
tend to seek an exact match for a given specification and therefore can potentially be evaded
by polymorphic variants. Furthermore, the specifications used for detection are produced
from known malware families and cannot be used to battle zero-day malware.

The malicious code model of classification based on feature extraction usually use data
mining techniques or machine learning methods. The malware classification model based on
machine learning usually uses shallow machines learning models (such as SVM[16] , Naive
Bayes[17], decision tree[18][19], Random Forest[20] , KNN[21]) or shallow machine
learning models fused. Contrast to basic learning method for shallow structure algorithm, the
limitation lies in limited samples and cell cases of complex function said ability is limited, its
generalization ability for complex classification problems under certain constraints. Deep
learning method plays a better generalization performance of the classification and can learn
more about cell cases of complex function.

(1) The traditional methods (such as the signature-based detection, feature matching) can
not be able to achieve a good recognition and classification effect for exponentially
increasing malware, and they rely on manual operations, formulate rules, which cannot fully
extract malicious characteristics of the code. This paper will solve the exponential growth of
malware in automation and accuracy.

(2) Analyzing the malware using static analysis is a widely used technique, the static
analysis does not need to execute the code, while, it can not cope with the Shell code,
polymorphism, metamorphism etc. Besides, the dynamic analysis avoids the drawbacks
above, but it needs to execute the malware in run-time to avoid them, the dynamic analysis
of malware detection monitors malicious activity on the smart phone, it involved millions of
smart phones in practice Paranoid Android at large scale is technically not feasible. This
paper will use the combination of static and dynamic for detection and analysis, which can
show their own advantages.

3658 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

(3) By contrast basic learning method for shallow structure algorithm, the limitation lies
in limited samples and cell cases of complex function said ability is limited, its
generalization ability for complex classification problems under certain constraints. Deep
learning method plays a better generalization performance of the classification and can learn
more about cell cases of complex function.[22]

In our previous study, we have put forward malware image texture for
analysis[23][24][25][26]. For improving accuracy of detection, in this paper, the ITMF and
MAEVS are applied on feature extraction and classification of input data.

3. Method

3.1 Image Texture Median Filter
3.1.1 Median Filter
The MF is a nonlinear digital filtering technique, often used to remove noise from an

image or signal. Such noise reduction is a typical pre-processing step to improve the results
of later processing (for example, edge detection on an image). MF is very widely used in
digital image processing, under certain conditions, it preserves edges while removing noise
(but see discussion below), also having applications in signal processing.

Let X and Y respectively represent an image and its median-filtered image. The MF
operation with as the neighborhood is performed according to equation.

，In the formula , denotes , at , the

pixel value, where .

3.1.2 Image Texture Median Filter
It is a useful technique to used visualization in computer forensics, NSS, image analysis,

image classification and large-scale image search, to name a few.
Recently, image texture-based classification was used to classify malware. Image

texture is a block of pixels which contains variations of intensities arising from repeated
patterns, and then analyze it with the idea of median filtering.

Fig. 1. Feature Extraction(Image Texture Median Filter)

http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B
http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B
http://kns.cnki.net/kns/detail/detail.aspx?dbcode=SJES&dbname=SJESTEMP_U&filename=SJESCF329D0F3FC6F5F228535FFE93D02D2B

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3659

Assume that there is a malware sets },,,,3,2,1{},{ nimM i ∈= , where n is the

number of malware.

For malware im , it is mapped to an uncompressed grayscale image)(imMatrix , and

the gray value of the image is stored as a matrix.























=

++

+

+

)(

)3(

)2(

)(

)1(

)12(

)1(

)2()1(

,,,
,,

)(

knki

ki

ki

ki

nki

ki

ki

ii

i

m

m
m
m

m

m
m

mm

mMatrix
，

，，，
，

，

，

，

，

，

，

Fig. 2. Image Texture Median Filter Matrix

Based on the texture image median filter, first define a one-dimensional array N,

},,,,,,,,{)()1()()2()1(knkikikiii mmmmmN ++= . Texture image median filtering }{ jqQ = , for

∑
−+

=

=
1

)()(median
rj

jo
oij mq

, where r is the median filter sliding window size.

3.2 MAEVS
The Android malware API call usually reflects the dynamic activity of a specific pattern

software. For example, the malware sending a SMS will call SEND_SMS as a license, and
using the dialing function will call android.hardware.telephony.

Analogical to the concept of word vectors in natural language processing, this paper
suggestes MAEVS and maps malware to vector space.

Activity
Url

Intenstion
pemissionUsed

callsAPI

l
n

x



























= 0
1
0

)(c

Fig. 3. MAEVS

In this paper, the five most common malware activity: API calls, Used permissions, Url,
Intenstion, and Activity, are selected and mapped into the MAEVS.

3660 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

Fig. 4. Feature Extraction(MAEVS)

Furthermore, to raise the accuracy of classification algorithm on feature selection, on

the basis of that, we amplify the implicit features of texture image median filter and API call
in malware, to train Deep Belief Network .

Fig. 5. Android malware Image Texture Median Filter Analysis based on DBN

3.3 DBN(Deep Belief Network)

3.3.1 RBM(Restricted Boltzmann Machine)
Restricted Boltzmann Machine (RBM) is a undirected graphical model. There are no

links between units of the same layer, only between input (or visible) units xj and hidden
(also invisible) units hi. The difference between standard Boltzmann machines and RBM is
that in the restricted model units within the same layer are not connected. which makes
inference and learning within this graphical model tractable.

3.3.2 BP(back propagation)

BP(back propagation) is a common method of training artificial neural networks and
used in conjunction with an optimization method such as gradient descent. The algorithm
repeats a two phase cycle, propagation and weight update. When an input vector is presented
to the network, it is propagated forward through the network, layer by layer, until it reaches
the output layer. The output of the network is then compared to the desired output, using a
loss function, and an error value is calculated for each of the neurons in the output layer. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3661

error values are then propagated backwards, starting from the output, until each neuron has
an associated error value which roughly represents its contribution to the original output.

3.3.3 CD algorithm

The goal of RBM training is to make marginal probability distribution)(vp fit

probability distribution of training samples based on justifying the parameters of model. To
achieve this, we use k-steps contrastive divergence learning algorithm to train RBMs which
is a standard way to train RBMs. The idea of CD-k is quite simple: the chain is run for only k

steps, starting from an example)0(v of the training set and yielding the sample)(kv . Each

step t consists of sampling)(th from)|()(tvhp and sampling)1(+tv from)|()(thvp

subsequently. The gradient in equation (2) with respect to θ of the log-likelihood for one

training pattern
)0(v is then approximated by equation (1),

θ
ε

θ
εθ

∂
∂

+
∂

∂
−= ∑∑),()|(),()|(),(

)(
)(

)0(
)0()0(hvvhphvvhpvCD

k

h

k

h
k (1)

In the following, we restrict our considerations to RBMs with binary units for which,
which is showed in equation (2).

)(][
1)|(∑ =

+=
m

j jijiivhp vwcsigmoidhE
i

 (2)

3.3.4 DBN

Hinton, Osindero, and Teh introduced a greedy layer-wise unsupervised learning
algorithm for Deep Belief Networks (DBN) in 2006, shows in Fig. 6 The training strategy
for such networks may hold great promise as a principle to help address the problem of
training deep networks. Upper layers of a DBN are supposed to represent more "abstract"
concepts that explain the input data whereas lower layers extract "low-level features" from
the data. As an unsupervised learning in deep architectures, DBN is a multi-layered
probabilistic generative model. Deep Belief Network can be defined as a stack of Restricted
Boltzmann machines with a Back Propagation(BP) to fine tuning. Previously, Deep Belief
networks has been successfully employed in recognize, cluster and generate images, video
sequences and motion-capture data.

3662 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

V

H1

H2

H3

Output Layer

Q(h1~x) P(h1~x)

Q(h2~h1) P(h2~h1)

Q(h3~h2)

...Labels

Error

Fine-tuning

Fine-tuning

 Error
BP

P(h3~h2)
Fine-tuning

Fine-tuning

BP

Fig. 6. DBN

4. Experiment

Drebin(the malware dataset) contains 5,560 applications from 179 types different
malware families. The samples have been collected in the period of August 2010 to October
2012 and were made available to us by the Mobile-Sandbox project. Besides, we also
collected 123453 kinds of benign application for research.

In order to guarantee the efficient stringency of experiments data applied to the model,
this paper selects 1550, 2620, 5825 samples from the dataset.

In the experiment, it is crucial to create an appropriate experiment environment for
detection and analysis.

Table 1. Experimental environment

Parameter Value
OS Windows 7 64 bit platform

CPU Intel i7-7700@3.6HZ 3.6GHZ
GPU NVIDA GeForce GTX 1080
RAM 32G

Hard disk 120G SSD+4T HDD
CUDA 7.5

CUDNN 5.0
Python 2.7.3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3663

It is essential to constructs an experiment environment of Python 2.7.3 with suitable and
available module. It is listed in the following table.

Table 2. Python module for experiment

name introduction version
numpy The fundamental package for scientific computing with

Python
1.9.2

pandas Data structures and data analysis tools 0.16.0rc1(0.11.1)
PIL Python Imaging Library 1.1.7

Scikit-learn Python module for machine learning 0.16.1
scipy Python-based ecosystem of open-source software for

mathematics
0.15.1

twisted An asynchronous networking framework 15.4.0
six Compatibility library 1.7.3
pip The PyPA recommended tool for installing Python

packages.
8.1.2

wheel A built-package format for Python 0.29.0
datutil Extensions to the standard Python datetime module 2.2

pyparsing A general parsing module for Python 2.0.1
setuptools Package development process library 0.16.1

pytz Brings the Olson tz database into Python 2016.6.1
nolearn Python maching learning module 0.6.0
theano Python deep learning module 0.8.2
gdbn Python deep learning DBN moudle 0.2
keras Python deep learning module 2.0.8

Tensorflow-GPU Python deep learning module 1.4.0

This experiment has selected different numbers data samples to determine variable

parameters (feature number, number of network layers, etc.), with 1550, 2620, 5825
experimental data, in addition, 60% of the samples are training data, and the other 40% are
test data. At the same time, a unified statistical indicator is used to evaluate the performance
of the model, and the total prediction accuracy (Q) formula (3) is used to measure the
performance of the model.

Q= (TP+TN)/(TP+TN+FP+FN) (3)
In equation (3), TP represents the number of true positives, FP represents the number of

false positives, TN represents the number of true negatives, and FN represents the number of
false negatives.

3664 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

4.1 Effect of variable parameters on the experimental results in the model
The variable parameters in the experiment include the number of features, the number

of network layers, etc. In order to optimize the experimental results, the variable parameters
are tested on the same data set, and the optimal parameters are selected. The experimental
results are shown in Fig. 7 and Table 3.

Table 3. Pix number of image texture on experimental results

 500 1000 2000 2500
1550 94.0 94.1 94.8 94.3
2620 94.08 94.9 95.1 94.6

The effect of Image Texture features on

experimental results

93

93.5

94

94.5

95

95.5

500 1000 2000 2500

Image Texture features num

A
c
c
u
r
a
c
y
(
%
)

1550

2620

Fig. 7. Pix number of image texture on experimental results

Table 4. The effect of the number of DBN layers on the experimental results

Layer 1550 2620
2 94.8 95.1
3 94.6 94.8
4 94.1 94.0

Effect of the number of DBN network layers on
Experimental Results

93

94

95

96

2 3 4
Data Num

Ac
cu
ra
cy
(%
)

1550

2620

Fig. 8. The effect of the number of DBN layers on the experimental results

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3665

Based on the results of the above groups of experiments, it is clear to know: when the
number of texture fingerprint features is 2000, the classification accuracy is the highest.
When the number of DBN network layers is 2, the classification accuracy is the highest.
Therefore, the parameters of the model in the experiment are listed in Table 5.

Table 5. Parameters of the model

parameters values
Image feature num 2000

DBN layer 2
optimize BP
test_size 0.4
epochs 300

r 9

4.2 Effect of Malware Image Texture(MIT) Features on Experimental

Results
In order to ensure that the MIT feature has an important influence on the experimental

results, we use the MIT feature to fuse the MAEVS and only the MAEVS on the basis of the
aforementioned parameter model. The experimental results are shown in Fig. 9 and Table 6.

Table 6. Effect of MIT Features on Experimental Results

Data num MIT+MAEVS MAEVS only
1550 94.8 94.6
2620 95.1 95.0
5825 95.7 93.5

Effect of Texture Image Features on Experimental
Results

92

93

94

95

96

1550 2620 5825
Data Num

Ac
cu

ra
cy

(%
) MIT+MAEVS

MAEVS only

Fig. 9. Effect of Texture Image Features on Experimental Results

3666 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

4.3 The Comparison of Introducing Malware ITMF
In order to demonstrate the feasibility of the proposed algorithm, the malware ITMF

was introduced to compare experiments without malware ITMF. The experimental results are
listed in Fig. 10 and Table 7.

Table 7. Compare to without malware ITMF

Data num DBN(MIT+ITMF+MAEVS) DBN(MIT+MAEVS)

1550 95.0 94.8
2620 95.4 95.1
5825 95.9 95.7

Image texture median filter or not in malware
analysis

94

95

96

1550 2620 5825

Data Num

A
c
c
u
r
a
c
y
(
%
)

DBN(MIT+ITMF+MAEVS)

DBN(MIT+MAEVS)

Fig. 10. Compare to without malware ITMF

4.4 Comparison with Shallow Machine Learning Model
In order to demonstrate the feasibility of this algorithm, the deep learning model is

merged with the malware ITMF and the MAEVS. Compared with the shallow machine
learning model SVM, KNN, and ANN, the results of classification accuracy are listed as
follows.

Table 8. Comparison with shallow machine learning model

Data num
DBN

（M IT+ITM

F+MAEVS)

DBN
(MIT+M
AEVS)

SVM
(MIT+M
AEVS)

KNN
(MIT+M
AEVS)

ANN
(MIT+M
AEVS)

1550 95.0 94.8 92.7 94.5 93.6
2620 95.4 95.1 94.2 95.0 95.0
5825 95.9 95.7 94.5 95.1 95.2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3667

Comparison with shallow machine learning model

90

92

94

96

98

1550 2620 5825

Data num

A
c
c
u
r
a
c
y
(
%
)

DBN（MIT+ITMF+MAEVS)

DBN(MIT+MAEVS)

SVM(MIT+MAEVS)

KNN(MIT+MAEVS)

ANN(MIT+MAEVS)

Fig. 11. Comparison with shallow machine learning model

5. Conclusion

This paper is different from previous researches. Based on the MAEVS, the malware
ITMF has been proposed. The DBN model was used to extract features of the malware ITMF
and the MAEVS.

From the Fig. 10 and Fig. 11, a large number of experimental results showed great
performance in accuracy. From the introduction of ITMF, the average classification accuracy
for Android malware can reach 95.43%, which is significantly higher than 95.2% without
malware ITMF, 93.8% for SVM, 94.8% for KNN, and 94.6% for ANN.

Acknowledgements

We would like to thank all the participants in our reasearch that provided useful and
detailed feedback. Meanwhile, I would thank all my team and my school for the research.

This work is partially supported by the National Natural Science Foundation of
China(61841301). The Ministry of education of Humanities and Social Science
project(17YJAZH043). The Scientific Research Innovation Project of Education Innovation
Plan for Graduate Students in Xinjiang Uygur Autonomous Region(XJGRI2017007). The
Science the Technology Talent Training Project of Xinjiang Uygur Autonomous
Region(QN2016YX0051). The Cernet Next Generation Internet Technology Innovation
Project(NGII20170420). The Natural Science Project of Hubei

3668 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

Provience(2018CFB456,2017CFB745). The Research Project of Hubei Provincial
Department of Education (Q20184504). Guiding Project of the Science and Technology
Program of the Hubei Provincial Department of Education(B2018251).

Reference

[1] Balaganesh D, Chakrabarti A, Midhunchakkaravarthy D, “Smart Devices Threats, Vulnerabilities
and Malware Detection Approaches: A Survey,” EJERS, 3(2), 7, 2018. Article (CrossRef Link)

[2] Li Jian,Wang Zheng et., “An Android Malware Detection System Based on Feature Fusion,”
Chinese Journal of Electronics, 27(6), 1206-1213, 2018. Article (CrossRef Link)

[3] Seshagiri P, Vazhayil A,Sriram P, “AMA: Static Code Analysis of Web Page for the Detection of
Malicious Scripts ,” Procedia Computer Science, 93, 768-773, 2016. Article (CrossRef Link)

[4] Willems C, Holz T, Freiling F, “Toward Automated Dynamic Malware Analysis Using
 CWSandbox,” IEEE Security & Privacy Magazine, 5(2), 32-39, 2007. Article (CrossRef Link)
[5] Elhadi A A E, Maarof M A, Osman A H, “Malware detection based on hybrid signature
 behaviour application programming interface call graph,” American Journal of Applied
 Sciences, 9(3), 283-288, 2012. Article (CrossRef Link)
[6] Park Y, Reeves D, Mulukutla V, et al., “Fast malware classification by automated behavioral
 graph matching,” in Proc. of CSIIRW '10 Proceedings of the Sixth Annual Workshop on
 CyberSecurity and Information Intelligence Research, 1-4, 2010. Article (CrossRef Link)
[7] Christodorescu M, Jha S, Seshia S A, et al., “Semantics-aware malware detection,” in Proc. of

Security and Privacy, 2005 IEEE Symposium on, 32-46, 2005. Article (CrossRef Link)
[8] Fredrikson M, Jha S, Christodorescu M, et al., “Synthesizing Near-Optimal Malware

Specifications from Suspicious Behaviors,” in Proc. of IEEE Symposium on Security and Privacy.
IEEE Computer Society, 45-60, 2010. Article (CrossRef Link)

[9] Kolbitsch C, Comparetti P M, Kruegel C, et al., “Effective and efficient malware detection at
 the end host,” in Proc. of 18th Usenix Security Symposium, 351-366, Montreal, Canada,
 August10-14, 2009. Article (CrossRef Link)
[10] Chen K Z, Johnson N, D'Silva V, et al., “Contextual Policy Enforcement in Android
 Applications with Permission Event Graphs,” Heredity, 110(6), 586, 2013.

Article (CrossRef Link)
[11] Kruegel C, Toth T, “Using Decision Trees to Improve Signature-Based Intrusion Detection,”
 Lecture Notes in Computer Science, 2820, 173-191, 2003. Article (CrossRef Link)
[12] Venkitaraman R, Gupta G, “Static program analysis of embedded executable assembly code,” in

Proc. of International Conference on Compilers, Architecture, and Synthesis for Embedded
 Systems, CASES 2004, Washington Dc, Usa, 157-166, 2004. Article (CrossRef Link)

[13] Zhang B, Li Q, Ma Y, “Research on dynamic heuristic scanning technique and the application of
the malicious code detection model,” Information Processing Letters, 117, 19-24, 2017.
Article (CrossRef Link)

[14] Chen Y Q, Xiao-Ping W U, Fu Y, et al., “Active Defense strategies selection for network mixed
 malicious action,” in Proc. of International Workshop on Cloud Computing & Information
Security, 52(1391), 336-340, 2013. Article (CrossRef Link)

[15] Aijun Jiang, Zhifeng Liu, Qinglong Kong, Bo Zhang, Tong Yao, “Scanning device, cloud
 management device, method and system for checking and killing malicious programs,” US,
US20150317478 A1, 2015. Article (CrossRef Link)

[16] Arp D, Spreitzenbarth M, Hübner M, et al., “DREBIN: Effective and Explainable Detection of
 Android Malware in Your Pocket,” in Proc. of Network and Distributed System Security
Symposium, 2014. Article (CrossRef Link)

https://doi.org/10.24018/ejers.2018.3.2.302
https://doi.org/10.1049/cje.2018.09.008
https://doi.org/10.1016/j.procs.2016.07.291
https://doi.org/10.1109/MSP.2007.45
https://doi.org/10.3844/ajassp.2012.283.288
https://doi.org/10.1145/1852666.1852716
https://doi.org/10.1109/SP.2005.20
https://doi.org/10.1109/SP.2010.11
http://cs.ucsb.edu/%7Echris/research/doc/usenix09_maldetect.pdf
https://doi.org/10.1038/hdy.2013.9
https://doi.org/10.1007/978-3-540-45248-5_10
https://doi.org/10.1145/1023833.1023857
https://doi.org/10.1016/j.ipl.2016.06.014
https://doi.org/10.2991/ccis-13.2013.78
https://www.freshpatents.com/-dt20151105ptan20150317479.php
http://doi.org/10.14722/ndss.2014.23247

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3669

[17] Schultz M G, Eskin E, Zadok F, et al., “Data mining methods for detection of new malicious
 executables,” in Proc. of Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. IEEE, 38-49, 2001. Article (CrossRef Link)

[18] Zerina Mašetic, Subasi A , Azemovic J, “Malicious Web Sites Detection using C4.5 Decision
Tree,” in Proc. of Iusscrg, Fourth Regional Conference on Soft Computing, 2016.
Article (CrossRef Link)

[19] Zhao G, Wang P, Wang X, et al., “The Detection Method for Two-dimensional Barcode
 Malicious URL Based on the Decision Tree,” Information Security & Technology, 2014.

Article (CrossRef Link)
[20] Alam M S, Vuong S T, “Random Forest Classification for Detecting Android Malware,” Green

Computing and Communications. IEEE, 663-669, 2013. Article (CrossRef Link)
[21] Liu Z, Juan D U, Zhian Y I, “Application of a Improved Categorization Algorithm in the
 Malicious Information Filtering,” Microcomputer Applications, 2011.
[22] Bengio Y, “Learning deep architectures for AI,” Foundations and trends in machine learning,
 2(1), 1-127, 2009. Article (CrossRef Link)
[23] Luo Shiqi, Tian Shengwei, Yu Long, Yu Jiong and Sun Hua, “Android malicious code
 Classification using Deep Belief Network,” KSII Transactions on Internet and Information
 Systems, 12(1), 454-475, 2018. Article (CrossRef Link)
[24] Luo Shiqi, Tian Shengwei,et., “Research on malicious code classification algorithm of stacked
 auto encoder,” Application Research of Computers, 35(1), 261-265, 2018.

Article (CrossRef Link)
[25] Luo Shiqi, Tian Shengwei ,et. “Research strategy of classify malicious code into families on
 the method of deep belief networks,” Journal of Chinese Computer Systems, 38(11),
 2465-2470, 2017 Article (CrossRef Link)
[26] Luo Shiqi, Tian Shengwei, Yu Long, Yu Jiong and Sun Hua, “Android malware detection based

on texture fingerprint and malware activity vector space,” Journal of Computer Application,
38(4), 1058-1063, 2018. Article (CrossRef Link)

Luo Shi-qi, born in Hubei of China in 1993. Master, Assistant in School of Computer,

Hubei Polytechnic University. His main research interests include Information Security.

Ni Bo, born in Hubei of China in 1982. PHD, Associate professor in School of Computer,

Hubei Polytechnic University. He received the PHD degree in Wuhan University. His main

research interests include Computer Vision.

https://ieeexplore.ieee.org/document/924286
http://doi.org/10.21533/scjournal.v5i1.109
http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-AQJS201402012.htm
http://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
http://doi.org/10.1561/2200000006
http://doi.org/10.3837/tiis.2018.01.022
http://doi.org/10.3969/j.issn.1001-3695.2018.01.056
http://xwxt.sict.ac.cn/EN/Y2017/V38/I11/2465
http://doi.org/10.11772/j.issn.1001-9081.2017102499

3670 Luo et al.: Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

Jiang Ping, born in Hubei of China in 1983. PHD, lecturer in School of Computer, Hubei

Polytechnic University. He received the PHD degree in Huazhong University of Science and

Technology. His main research interests include Intelligence Technology.

Tian Sheng-wei, born in 1973. Professor and PhD supervisor in Xinjiang University. His

main research interests include Intelligence Computing.

Yu Long, born in 1974. Professor and PhD supervisor in Xinjiang University. Her research

interests include Intelligence Technology.

WANG Rui-jin, born in 1980. PhD, lecturer in School of Computer Science and

Engineering, University of Electronic Science and Technology of China. His main research

interests include Quantum Communication Security.

http://cs.hbpu.edu.cn/Page/mdetailb.aspx?NId=30667

