• Title/Summary/Keyword: Male mouse

Search Result 542, Processing Time 0.03 seconds

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

Comparison of irradiated and non-irradiated acellular dermal matrices in breast reconstruction under radiotherapy

  • Woo, Soo Jin;Ha, Jeong Hyun;Jin, Ung Sik
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • Background Acellular dermal matrices (ADMs) have become an essential material for implant-based breast reconstruction. No previous studies have evaluated the effects of sterility of ADM under conditions of radiation. This study compared sterile (irradiated) and aseptic (non-irradiated) ADMs to determine which would better endure radiotherapy. Methods Eighteen male Balb/C mice were assigned to the control group with no irradiation (group 1) or one of two other groups with a radiation intensity of 10 Gy (group 2) or 20 Gy (group 3). Both sterile and aseptic ADMs were inserted into the back of each mouse. The residual volume of the ADM (measured using three-dimensional photography), cell incorporation, α-smooth muscle actin expression, and connective tissue growth factor expression were evaluated. The thickness and CD3 expression of the skin were measured 4 and 8 weeks after radiation. Results In groups 2 and 3, irradiated ADMs had a significantly larger residual volume than the non-irradiated ADMs after 8 weeks (P<0.05). No significant differences were found in cell incorporation and the amount of fibrosis between irradiated and non-irradiated ADMs. The skin was significantly thicker in the non-irradiated ADMs than in the irradiated ADMs in group 3 (P<0.05). CD3 staining showed significantly fewer inflammatory cells in the skin of irradiated ADMs than in non-irradiated ADMs in all three groups after 4 and 8 weeks (P<0.05). Conclusions Under radiation exposure, irradiated ADMs were more durable, with less volume decrease and less deposition of collagen fibers and inflammatory reactions in the skin than in non-irradiated ADMs.

Genotoxicity Study of ChondroT (ChondroT의 유전독성 연구)

  • Kim, Sun-Gil;Kim, Joo Il;Kim, Ji-Hoon;Yoon, Chan Suk;Jeong, Ji-Won;Na, Chang-Su;Kim, Seon-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.59-79
    • /
    • 2021
  • Objectives This study was performed to observe the genotoxic effect of the ChondroT. Methods To evaluate the genotoxicity of ChondroT, an experiment of bacterial reverse mutation test, in vitro mammalian chromosomal aberration test and mammalian erythrocyte micronucleus test in mouse was conducted. Results TA98, TA100 and TA1537 strains in the absence of metabolic activation system (S9 mix), the number of revertant colonies being greater than 2-fold of the respective negative control value. Both in -S9 mix and +S9 mix, the frequencies of aberration cells with structural aberration and numerical aberrations of chromosome were less than 5%. There was no increase of polychromatic erythrocyte with one or more micronuclei at any dose of test substance compared to the negative control group (p<0.05). Conclusions In TA98, TA100 and TA1537 strains in the absence of metabolic activation system (S9 mix), the number of revertant colonies was greater than 2-fold of the respective negative control value, showing positive results. ChondroT was considered to be non-clastogenic to Chinese hamster lung (CHL/IU) cells under the present experimental condition. and ChondroT was determined not to induce an increased frequency of micronuclei in the bone marrow cells of male ICR mice under the present experimental condition.

The protective effects of steamed ginger on adipogenesis in 3T3-L1 cells and adiposity in diet-induced obese mice

  • Kim, Bohkyung;Kim, Hee-Jeong;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.15 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The steamed ginger has been shown to have antioxidative effects and a protective effect against obesity. In the present study, we investigated the effects of ethanolic extract of steamed ginger (SGE) on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: The protective effects of SGE on adipogenesis were examined in 3T3-L1 adipocytes by measuring lipid accumulations and genes involved in adipogenesis. Male C57BL/6J mice were fed a normal diet (ND, 10% fat w/w), a high-fat diet (HFD, 60% fat w/w), and HFD supplemented with either 40 mg/kg or 80 mg/kg of SGE for 12 weeks. Serum chemistry was measured, and the expression of genes involved in lipid metabolism was determined in the adipose tissue. Histological analysis and micro-computed tomography were performed to identify lipid accumulations in epididymal fat pads. RESULTS: In 3T3-L1 cells, SGE significantly decreased lipid accumulation, with concomitant decreases in the expression of adipogenesis-related genes. SGE significantly attenuated the increase in body, liver, and epididymal adipose tissue weights by HFD. Serum total cholesterol and triglyceride levels were significantly lower in SGE fed groups compared to HFD. In adipose tissue, SGE significantly decreased adipocyte size than that of HFD and altered adipogenesis-related genes. CONCLUSIONS: In conclusion, steamed ginger exerted anti-obesity effects by regulating genes involved in adipogenesis and lipogenesis in 3T3-L1 cell and epididymal adipose tissue of DIO mice.

The Antioxidant Activities and Neuroprotective Effects of Hot Water Extracts from Torreyae Semen (비자 열수 추출물의 항산화 활성 및 뇌신경세포 보호효과 연구)

  • Lee, Soong-In;Choi, Chan-Hun;Kim, Jeong-Sang;Lim, Seong-Soo;Jung, Hyun-Woo
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.41-48
    • /
    • 2017
  • Objectives : This study was designed to estimate the antioxidative and neuroprotective effects of Torreyae Semen hot water extracts (TS). Methods : Torreyae Semen was extracted by hot water for 2 hours with a temperature of 105 degrees. Polyphenols and total flavonoid were measured and LC-MS/MS was used to certificate anticipated antioxidative compounds. The antioxidant activities of TS were measured as scavenging effects of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and Nitrite Oxides (NO). Cell viability and proliferation rate was measured MTT assay. The toxicities to thymocytes and splenocytes were evaluated by the proliferation rate of primary cultured cells of 7 weeks, male Balb/c mice. The antioxidant activities of TS on C6 mouse glioma cells were measured by the analysis of total glutathione contents variation. The neuroprotective effects against oxidative stresses were measured by MTT assay. Results : Polyphenols of TS was $92.00{\pm}1.24{\mu}g/mg$, and total flavonoids was $0.36{\pm}0.14{\mu}g/mg$. TS includes gallocatechin, epigallocatechin, gallocatechin gallate and epigallocatechin gallate. TS included gallocatechin, epigallocatechin, gallocatechin gallate, epigallocatechin gallate. TS showed DPPH and NO scavenging effects as dose-dependent manner at the concentrations of $0-10mg/m{\ell}$. In MTT assay, TS shows no significant toxicity to C6 cells, primary cultured thymocytes and splenocytes of Balb/c mice. TS increased the level of total glutathiones. TS increased cell viabilities of C6 cells against oxidative stresses such as $H_2O_2$, sodium nitroprusside (SNP), Rotenone at the concentrations of $0-0.063mg/m{\ell}$. Conclusions : TS shows the antioxidant and neuroprotecitive effects in these experiments.

Behavioral Deficits in Adolescent Mice after Sub-Chronic Administration of NMDA during Early Stage of Postnatal Development

  • Adil, Keremkleroo Jym;Remonde, Chilly Gay;Gonzales, Edson Luck;Boo, Kyung-Jun;Kwon, Kyong Ja;Kim, Dong Hyun;Kim, Hee Jin;Cheong, Jae Hoon;Shin, Chan Young;Jeon, Se Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.320-327
    • /
    • 2022
  • Neurodevelopmental disorders are complex conditions that pose difficulty in the modulation of proper motor, sensory and cognitive function due to dysregulated neuronal development. Previous studies have reported that an imbalance in the excitation/inhibition (E/I) in the brain regulated by glutamatergic and/or GABAergic neurotransmission can cause neurodevelopmental and neuropsychiatric behavioral deficits such as autism spectrum disorder (ASD). NMDA acts as an agonist at the NMDA receptor and imitates the action of the glutamate on that receptor. NMDA however, unlike glutamate, only binds to and regulates the NMDA receptor subtypes and not the other glutamate receptors. This study seeks to determine whether NMDA administration in mice i.e., over-activation of the NMDA system would result in long-lasting behavioral deficits in the adolescent mice. Both gender mice were treated with NMDA or saline at early postnatal developmental period with significant synaptogenesis and synaptic maturation. On postnatal day 28, various behavioral experiments were conducted to assess and identify behavioral characteristics. NMDA-treated mice show social deficits, and repetitive behavior in both gender mice at adolescent periods. However, only the male mice but not female mice showed increased locomotor activity. This study implies that neonatal exposure to NMDA may illicit behavioral features similar to ASD. This study also confirms the validity of the E/I imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model for ASD. Future studies may explore the mechanism behind the gender difference in locomotor activity as well as the human relevance and therapeutic significance of the present findings.

Effects of Anemarrhena asphodeloides Extract on Atopic-Dermatitis like Skin Lesions in DNCB-induced Balb/c Mice (DNCB로 유도한 아토피 유사 피부염에 지모 추출물이 미치는 영향)

  • Yumi Jang;Yong-Ung Kim;Mi Ryeo Kim;Hye-Sun Lim;Gunhyuk Park
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.67-76
    • /
    • 2023
  • Under constant environmental pollution, the incidence of Atopic Dermatitis (AD) caused by air pollutants and allergens has increased. AD is an allergy inflammatory skin disease characterized by pruritus, eczema, and skin dryness. In herbal medicine, Anemarrhena asphodeloides (Anemarrhenae Rhizoma; AR) has been utilized to treat Alzheimer's disease, osteoporosis, hypertension, and inflammation. The purpose of study evaluated the effect of AR in a mouse model of 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions. After acclimatization for 5 days, the mice (6-week-old, male Balb/c) were divided into five groups (n=6/group): NC (normal control), DNCB (control), Dex (5 mg·kg-1, p.o.), AR100 (100 mg·kg-1, p.o.), and AR300 (300 mg·kg-1, p.o.). On days 1 and 3, 1% DNCB was applied to the skin and ears. After 4 days, 0.5% DNCB was applied once every 2 days for 2 weeks. Then, skin and ears eczema area and severity index (EASI); skin nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) levels; and plasma immunoglobulin E (IgE) levels were examined. The AR groups showed lower EASI, skin and ear thickness, mast cell count, and IgE levels than the control groups. Moreover, AR reduced iNOS, COX-2, and PGE2 levels. Therefore, AR possesses anti-inflammatory properties and can improve skin damage, indicating its therapeutic potential against AD.

Assessment of the 4-week repeated dose oral toxicity test of Smilax sieboldii extract in ICR mice (ICR 마우스에서 청가시덩굴 추출물의 4주간 반복 투여 독성시험)

  • Jung A Lee;Min-Hee Hwang;Young-Rak Cho;Eun-Kyung Ahn
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.397-403
    • /
    • 2022
  • Smilax sieboldii is one of the Smilax species. A number of Smilax plants have long been used in traditional medicine in the tropics and subtropics worldwide. Repeated dose oral toxicity test is an essential experiment for toxicity evaluation before efficacy evaluation. The purpose of this study is to evaluate toxicity and the no-observed adverse effect level (NOAEL) using oral administration of Smilax sieboldii extract (SSE) in male and female ICR mice for 4 weeks. SSE was orally administered daily for 4 weeks at a dose of 500, 1000, and 2000 mg/kg/day (MPK). There were no significant differences in mortalities, clinical signs, body weight changes, food intake, hematological analysis, serum clinical chemistry test and relative organ weights in all animals administrated with SSE. The results obtained in this study suggest that SSE did not show any toxic effect in ICR mice and the NOAEL of SSE was regarded as over 2000 MPK.

Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease

  • Hyun Ha Park;Byeong-Hyeon Kim;Seol Hwa Leem;Yong Ho Park;Hyang-Sook Hoe;Yunkwon Nam;Sujin Kim;Soo Jung Shin;Minho Moon
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.520-525
    • /
    • 2023
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression.

Rac1 inhibition protects the kidney against kidney ischemia/reperfusion through the inhibition of macrophage migration

  • You Ri Park;Min Jung Kong;Mi Ra Noh;Kwon Moo Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2023
  • Kidney ischemia/reperfusion (I/R) injury, a common cause of acute kidney injury (AKI), is associated with the migration of inflammatory cells into the kidney. Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho family of small GTPase, plays an important role in inflammatory cell migration by cytoskeleton rearrangement. Here, we investigated the role of Rac1 on kidney I/R injury and macrophage migration. Male mice were subjected to either 25 min of bilateral ischemia followed by reperfusion (I/R) or a sham operation. Some mice were administrated with either NSC23766, an inhibitor of Rac1, or 0.9% NaCl (vehicle). Kidney damage and Rac1 activity and expression were measured. The migration and lamellipodia formation of RAW264.7 cells, mouse monocyte/macrophage, induced by monocyte chemoattractant protein-1 (MCP-1, a chemokine) were determined using transwell migration assay and phalloidin staining, respectively. In sham-operated kidneys, Rac1 was expressed in tubular cells and interstitial cells. In I/R-injured kidneys, Rac1 expression was decreased in tubule cells in correlation with the damage of tubular cells, whereas Rac1 expression increased in the interstitium in correlation with an increased population of F4/80 cells, monocytes/macrophages. I/R increased Rac1 activity without changing total Rac1 expression in the whole kidney lysates. NSC23766 administration blocked Rac1 activation and protected the kidney against I/R-induced kidney damage and interstitial F4/80 cell increase. NSC23766 suppressed monocyte MCP-1-induced lamellipodia and filopodia formation and migration of RAW 264.7 cells. These results indicate Rac1 inhibition protects the kidney against I/R via inhibition of monocytes/macrophages migration into the kidney.