• Title/Summary/Keyword: Malate

Search Result 258, Processing Time 0.033 seconds

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Growth Characteristics and Comparative Proteome Analysis of Adzuki Bean Leaves at the Early Vegetative Stage under Waterlogging Stress (논 토양 조건에서 팥 유묘기의 생육특성과 단백질 발현 양상)

  • Hae-Ryong Jeong;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Hee-Ock Boo;Hag-Hyun Kim;Moon-Soon Lee;Sun-Hee Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.211-221
    • /
    • 2022
  • Recently, the demand for the cultivation of upland soil has been increasing, and the rate of conversion of paddy soil into upland soil is also increasing. Theincrease in uneven precipitation due to climate change has resulted in dramatic effects of waterlogging stress on upland crops. Therefore, the present study was conducted to investigate the changes in growth characteristics and the expression patterns of proteins at the two-leaf stage of adzuki beans. The domestic cultivar, Arari (Miryang No. 8), was used to test waterlogging stress. At the two-leaf stage of adzuki beans, plant height slightly decreased androot fresh weight showed significant changes after 3 days of waterlogging treatment. Chlorophyll content was also significantly different after 3 days of waterlogging treatment compared to its content in control plants. Using two-dimensional gel electrophoresis, more than 400 protein spots were identified. Twenty-one differentially expressed proteins from the two-leaf stage were analyzed using linear trap quadrupole-Fourier transform-ion cyclotron resonance mass spectrometry. Of these 21 proteins, 9 were up-regulated and 12 were down-regulated under waterlogging treatment. Protein information resource (https://pir.georgetown.edu/) categories were assigned to all 49 proteins according to their molecular function, cellular component localization, and biological processes. Most of the proteins were found to be involved in the biological process, carbohydrate metabolism and were localized in chloroplasts.

What are the Possible Roles of CO2 on Stomatal Mechanism? (기공 메커니즘에 대한 CO2의 역할은 무엇인가?)

  • Lee, Joon Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.

Effect of Meal Pattern on Lipogenesis and Lipogenic Enzyme Activity in Rat Adipose Tissue Fed High Fat Diet (식이급여형태가 고지방식이를 급여한 흰쥐 지방조직의 지방합성 및 지방합성 효소활성에 미치는 영향)

  • Lee, Jae-Joon;Choi, Hyun-Suk;Jeong, Eun;Choi, Byeong-Dae;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.335-343
    • /
    • 2006
  • This study was undertaken to investigate the effects of meal pattern on lipogenesis and activities of lipogenic enzyme in rats epididymal and mesenteric adipose tissues. A high fat diet was fed either ad libitum or in 1 meal during the last 3 h of the dark cycle for 4 weeks. Lipogenesis was measured as glucose conversion to total lipid and activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phophogluconate dehydrogenase (6PGDH) and NADP-malate dehydrogenase (ME) were determined by measuring NADPH production. Lipoprotein lipase (LPL) activity and serum lipoprotein concentrations were also measured. Meal-fed (3 h) rats had a decreased food intake, body weight and carcass fat compared with rats fed ad libitum. The serum triglyceride concentration of meal-fed rats tended to be higher than that of the ad libitum rats. However, there were no differences between meal-fed group and ad libitum group in serum concentrations of HDL-cholesterol, LDL-cholesterol and total-cholesterol. Rates of lipogenesis in both epididymal and mesenteric adipose tissues were significantly higher in the meal-fed group than that in the ad libitum group. In addition, meal-fed group showed higher G6PDH, 6PGDH and LPL activities in both epididymal and mesenteric adipose tissues, but exerted no significant effect on ME activity. These results suggest that meal-fed rats compared with ad libitum rats have marked lipogenic capacity, although such elevation probably does not result in increase in carcass fat concentration. Thus, meal-fed diet can be an important determinant of the alterations in adipose lipid metabolism.

Deacidification Effect of Campbell Early Must via Carbonic Maceration : Effect of Enzyme Activity Associated with Malic-Acid Metabolism (Carbonic Maceration처리에 의한 Campbell Early 발효액의 감산 효과: 사과산 대사 관련 효소활성의 영향)

  • Chang, Eun-Ha;Jeong, Seok-Tae;Jeong, Sung-Min;Roh, Jeong-Ho;Park, Kyo-Sun;Park, Seo-Jun;Choi, Jong-Uck
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.795-802
    • /
    • 2011
  • To determine the deacidification factor during carbonic maceration (CM), different temperature conditions were studied. The pH was higher in CM-$35^{\circ}C$ and CM-$25^{\circ}C$ and was lower in CM-$45^{\circ}C$. The total acid was inversely related to the pH. The malic-acid level decreased much more in CM-$35^{\circ}C$ than in CM-$45^{\circ}C$ while the lactic-acid level increased much more in CM-$35^{\circ}C$. The activity of the NADP-malic enzyme, which catalyzes the oxidative decarboxylation of L-malate into pyruvate, $CO_2$, and NADPH, was higher in CM-$25^{\circ}C$ and CM-$35^{\circ}C$ while CM-$45^{\circ}C$ showed no NADP-malic enzyme activity. The malic-dehydrogenase (MDH) activity was higher in CM-$25^{\circ}C$ and CM-$35^{\circ}C$ while CM-$45^{\circ}C$ showed no MDH activity. The oxalacetate decarboxylase activity was similar to the NADP-malic-enzyme and MDH activities. Pyruvate decarboxylase activity was shown in all the CM treatments. The L-lactic dehydrogenase (LDH) activity was not explored in the fermentation of pyruvate to lactate via LDH in the grapes during CM. In this study, it was confirmed that carbonic maceration reduced the malic acid during fermentation and was affected by the temperature. Moreover, it was assumed that the deacidification during the carbonic maceration of the grapes was probably correlated with the degradation enzyme activity of malic acid.

Changes in the taste compounds of Kimchi with seafood added during its fermentation (수산물 김치의 발효과정 중 정미성분 변화)

  • Nam, Hyeon Gyu;Jang, Mi-Soon;Seo, Kyoung-Chun;Nam, Ki-Ho;Park, Hee-Yeon
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.404-418
    • /
    • 2013
  • This study was conducted to investigate changes in the physicochemical properties (proximate compounds, reducing sugar, organic acid, ATP and related compounds, and free amino acid) of beachu kimchi (BK) with octopus, abalone, squid and webfoot octopus added during its storage at $4^{\circ}C$ for 35 days. The crude protein content of the seafood Kimchi, 1.98~3.41%, was higher than that of the BK. The organic acid level did not significantly differ in the four kinds of seafood during their fermentation, and their malate and succinate contents decreased while their lactate content increased. The levels of the ATP and related compound substances of the hypoxanthine contents were high but decreased during their fermentation. However, $3.40{\mu}mol/g$ of IMP was detected in the Kimchi with octopus added; $0.67{\mu}mol/g$ in the Kimchi with abalone added; and $1.80{\mu}mol/g$ in the Kimchi with squid added after they were fermented for 21 days, but the same were not detected in the BK. The taurine and ${\gamma}$-amino-n-butyric acid contents of the free amino acids in the seafood Kimchi were approximately two to 10 times and 1.5 to three times higher than in the BK, respectively.

Effects of Vegetable Sprout Power Mixture on Lipid Metabolism in Rats Fed High Fat Diet (새싹채소 혼합분말이 고지방 식이를 급여한 흰쥐의 지질대사에 미치는 영향)

  • Lee, Jae-Joon;Lee, Yu-Mi;Shin, Hyoung-Duck;Jeong, Young-Sim;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.965-974
    • /
    • 2007
  • This study was performed to investigate the effects of vegetable sprout powder on serum and adipose tissue lipid metabolism in rats fed high-fat diet for 4 weeks for induction hyperlipidemic model rat. Weight-matched male Sprague-Dawley rats were assigned to five groups according to dietary fat level (10% or 20% of diet wt.) and mixture of vegetable sprout powder levels (5% or 10% 10% or 20% of diet wt.). Vegetable sprout powder was the mixture of same amounts of dried barley, broccoli, rapeseed, alfalfa, radish, mustard, buckwheat and brussels sprouts. Experimental groups were normal fat diet with 5% cellulose (NF-C), high fat diet without fiber (HF-N), high fat diet with 5% cellulose (HF-C), HF-C diet with 5% vegetable sprout powder (HF-CSL), and HF-C diet with 10% vegetable sprout powder (HF-CSH). The body weight of HF-N group increased 16% compared with the NF-C group, while it was decreased by 15% and 22% for HF-CSL group and HF-CSH group, respectively. Fat mass and fat cell size of adipose tissue were lower in HF-CSL group and HF-CSH group compared with HF-C group, and lower in HF-CSH group compared with HF-CSL group. Serum triglyceride, total cholesterol and LDL-cholesterol contents were markedly decreased by vegetable sprout powder containing diet, while the serum HDL-cholesterol and phospholipid contents were higher in vegetable sprout powder containing diet in a dose-dependent manner. Leptin and insulin levels in serum showed a decrease in HF-CSH group. Significantly increased contents of triglyceride, total cholesterol, LDL-cholesterol, leptin and insulin in the serum of HF-N group were returned to normal or even below normal levels by feeding 10% vegetable sprout powder diet. The increased activities of NADP-malate dehydrogenase (ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) and lipoprotein lipase (LPL) in adiposetissue by HF-N group were decreased to the activity of normal fat group by feeding vegetable sprout powder in a dose-dependant manner. These results indicate that lipid metabolism in rats fed high-fat diet was suppressed by feeding vegetable sprout powder.