• Title/Summary/Keyword: Main Control Unit

Search Result 354, Processing Time 0.029 seconds

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

Design of AMBA AX I Slave Unit for Pipelined Arithmetic Unit (파이프라인 구조 연산회로를 위한 AMBA AXI Slave 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.712-713
    • /
    • 2011
  • In this paper, the AMBA AXI slave unit that can verify the pipelined arithmetic unit is proposed and the 2-stage 16-bit pipelined multiplier is introduced as design example. The proposed AXI slave unit consists of input buffer block memory, control registers, pipelined arithmetic unit, control unit, output buffer block memory, and AXI slave interface unit. The main operational procedures are divided into the following steps, such as burst-mode input data loading for the input buffer memory, programming of control registers, arithmetic operations for block data in the input buffer memory, and burst-mode output data unloading from output buffer memory to host processor. Because the proposed AXI slave unit is general structure, it can be efficiently applicable to AMBA AXI and AHB slave unit with pipelined arithmetic unit.

  • PDF

A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode (분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법)

  • Ahn, Seon-Ju;Park, Jin-Woo;Chung, Il-Yop;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

Development and Performance Test Results of a Segmented Scissors Type Switch for the Urban Maglev (도시형 자기부상열차 시저스분기기 개발현황과 성능시험결과)

  • Lee, Jong-Min;Park, Doh-Young;Han, Hyung-Suk;Kim, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3180-3186
    • /
    • 2011
  • A segmented scissors type switch has been developed for the urban transit maglev demonstration line to be commercialized near Incheon International Airport in 2013. Based on the design of the previous segmented 3-way switch, the scissors switch is composed of four segmented 2-way switches up/down and left/right and a turn table in the mid point. The main function of the scissors switch is to change the running direction of the train at end terminals. The developed scissors switch is planned to be installed in front of the 102 station, which has a side platform, of the demonstration line. The total length of the switch is 65m and the distance between the up and down track centerlines is 6m. The 2-way switches and turn table are made of steel box type beams, and have their own driving unit, locking unit, control unit, levitation and propulsion rails, and so on. Installed in the factory, a 100,000-cycle continuous operation test was carried out after manual and automatic test operations. The applicapability of the developed switch was verified through the measurements of the linearity of the track after repetitive operations, the mechanical operation noise, the load of the main driving motor, the safety of the control panel, the natural frequency of the girder, the deformation of the girder, and so on.

  • PDF

Design and Temporal Analysis of Hardware-in-the-loop Simulation for Testing Motor Control Unit

  • Choi, Chin-Chul;Lee, Kang-Seok;Lee, Woo-Taik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.366-375
    • /
    • 2012
  • This paper describes a design and temporal analysis of a hardware-in-the-loop (HIL) simulation environment for testing a motor control unit (MCU). The design concepts and main characteristics including unavoidable time delays of each component module are described. From temporal analysis results according to the module integration method, an appropriate solution is proposed to fix and minimize time delays. In order to verify the effectiveness of the proposed solution, the HIL test results are compared with the results of experiments and an offline simulation.

A Study for Designing of Intelligent Lighting Control LED Apparatus (지능형 조명 제어 시스템용 LED 단말기 개발)

  • Yoo, Soo-Yeub;Lee, Gi-Heon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.101-104
    • /
    • 2008
  • This paper is a report of designing for LED lights driver unit. The main purpose of driver designing is high electrical efficient performance and intelligent control LED driver. This LED driver can be used for intelligent light control. This product expects to improve the light control by dimming instead of interlace on/off light control that increases the social cost such as car accidents and etc.

  • PDF

Development and Performance Characteristic of Propulsion System (Converter/Inverter) for 120km/h AC Electric Vehicle (120km/h급 교류 전동차용 추진제어장치(Converter/Inverter) 개발 및 성능 특성)

  • Kim, Tae-Yun;Kno, Ae-Sook;Kim, Myung-Ryong;Baik, Kwang-Sun;Lee, Sang-Jun;Choi, Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1214-1221
    • /
    • 2006
  • In this paper, development and performance characteristic of propulsion system(Converter/Inverter) using IPM(Intelligent Power Module) for 120km/h AC electric vehicle is proposed. The proposed propulsion system is comprised of IPM converter and inverter stack which uses natural air-cooling system, DC-Link, OVCRf unit and control unit. And also 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by main line test results as well as combined test results.

  • PDF

A Study for Running Test Result of Train Powering/Braking Control by TCMS (TCMS에 의한 전동차 추진/제동 제어기술의 현차시험 결과 고찰)

  • 박성호;한정수;신광균;박계서
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.652-658
    • /
    • 2000
  • TCMS(Train Control & Management System) control monitor and test the main on-board equipments including propulsion/brake unit by the serial transmission line. TCMS reduces interface circuits and number of train lines by the software logic and utilizing serial communication method. This paper describes the method of powering and braking control by TCMS software logic, and the software logic is verified by running test at Seoul Subway Line# 6. By running test result, we can see TCMS successfully control Powering/Braking of train

  • PDF

A Study of Train Powering/Braking Control by TCMS (TCMS에 의한 전동차 추진/제동 제어기법)

  • 한정수;박성호;김국진;박계서
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.291-298
    • /
    • 1999
  • TCMS(Train Control & Management System) is the management system of train information which intensively control, monitor and test the main on-board equipments including propulsion/brake unit by the serial transmission line. TCMS reduces interface circuits and number of train lines by the software logic and utilizing serial communication method. This paper describes the method of powering and braking control by TCMS software logic, in comparison with the powering/braking control by conventional relay logic/hardwire circuits, and the software logic was verified by simulation test with TCMS simulator.

  • PDF

Real-Time Software Design using VxWorks for MSC(Multi-Spectral Camera) on KOMPSAT-2

  • Heo, Haeng-Pal;Yong, Sang-Soon;Kong, Jong-Pil;Kim, Young-Sun;Youn, Heong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.6-92
    • /
    • 2001
  • MSC is being developed to be installed on KOMPSAT(Korea Multi-Purpose Satellite-II and to provide high resolution multi-spectral. MSC consists of three main subsystems. One is EOS(Electro-Optics Subsystem), another is PMU(Payload Management Unit) and the other is PDTS(Payload Data Transmission Subsystem). There is an SBC(Single Board Computer) in the PMU to control all MSC subsystems. SBC incorporates Intel 80486 as a main processor and VxWorks as a real-time operating system. SBC software consists of four main tasks and several modules to deal with all control information for imaging and all the state of health telemetrv data, and to perform interface with another MSC units. SBC software also has to handle a lot of commands in order for MSC to perform his mission. One mission command consists of a series of related commands, which are In be executed in the designated sequence, with a specified time ...

  • PDF