• Title/Summary/Keyword: Magnetron Sputtering

Search Result 2,876, Processing Time 0.031 seconds

Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film (증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가)

  • Chan-Young Kim;Ha-Eun Lim;Gaeun Yang;Sukjeang Kwon;Chan-Hee Kang;Sang-Chul Lim;Taek Yeong Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.142-150
    • /
    • 2023
  • AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

Metal 첨가물질에 따른 비정질 IGZO 투명전극 특성 연구

  • Sin, Han-Jae;Hwang, Do-Yeon;Lee, Jeong-Hwan;Lee, Dong-Ik;Park, Seong-Eun;Park, Jae-Seong;Kim, Seong-Jin;Lee, Yeong-Ju;Seo, Chang-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.368-370
    • /
    • 2013
  • 투명 전극은 전기전도도를 갖는 동시에 가시광선을 투과하는 소재를 말하며, 구체적으로는 빛의 파장이 400~700 nm 영역대의 가시광선을 80% 이상 투과하며 전기전도도가 비저항으로 $10^{-3}{\Omega}cm$이하이거나 면저항이 $10^3{\Omega}$/${\Box}$소재를 의미한다. 투명 전극은 전기전도도에 따라 사용되는 용도가 다양하다. LCD, PDP, OLED 와 같은 평판디스플레이 및 3D 디스플레이의 투명전극으로 사용되는 핵심재료일 뿐만 아니라 터치스크린, 투명필름, 대전방지막, 열반사막, EMI 방지막, 태양전지 분야에 광범위하게 이용되고 있다. 일반적으로, 투명전극 박막에 가장 많이 사용되고 있는 소재는 ITO (indium tin oxide)이나, 주성분인 In의 사용량 증가로 상용 ITO 타겟 가격이 급등하고 있음으며, 고가의 ITO 타겟을 대체하기 위한 저가의 투명전극 소재 개발이 절대적으로 요구되며, 신규 소재 개발을 통한 기술력 우위 선점이 필수적으로 요구되는 상황이다. 본 연구에서는 기존에 디스플레이 분야에서 널리 활용되는 고가의 ITO를 대체하기 위한 다성분 금속산화물 투명전극 스퍼터링 타겟 제조기술을 개발하기 위한 연구로서, Metal이 첨가된 In-Ga-Zn-O기반의 3성분계 투명도전성 소재를 조성설계, 고밀도 균질 타겟 제조 및 투명전극 박막을 형성하는 연구를 실시하였다. 고체산화물 산화인듐(In2O3)분말, 산화갈륨(Ga2O3) 분말그리고 산화아연(ZnO)분말과 Metal을 몰비로 칭량한 후 분말을 폴리에틸렌제 포트에 넣고 에탄올을 충분히 채운 후 지르코니아(ZrO2) 볼(ball)을 이용하여 24 h 동안 볼 밀링(ball milling) 방법으로 혼합한 뒤, $120^{\circ}C$의 플레이트위에서 마그네틱 바로 stirring하면서 건조하였다. 이 분말을 건조기에서 완전히 건조한 후 알루미나 유발을 이용해서 pulverizing한 후 sieving기를 이용하여 분말의 조립화를 하였다. 이 분말을 금형에 넣고 300 kg/$cm^2$의 압력으로 press하여 성형한 뒤 대기중에서 소결하였다 소결을 위한 승온 온도는 $10^{\circ}C$/min이었고 소결은 $1,450^{\circ}C$에서 6 h 동안 하였다. IGZO target의 조성 비율은 1:1:12 (mol%)를 사용하였으며, 첨가한 Metal은 Boron (B), Germanium (Ge), Barium (Ba)을 사용하여 타겟을 제작하였다. M-IGZO 박막은RF magnetron Sputter를 이용하여 증착하였으며, 앞선 실험에서 제작한 타겟을 사용하여 M-IGZO박막을 투명전극으로 사용하기 위한 각각의 특성을 파악하였다. 모든 박막은 상온에서 증착을 하였으며, 증착된 박막두께를 측정하기 위해 ${\alpha}$-step IQ를 사용하였고, 광학적 특성을 분석하기 위해 UV-Visible spectrophotometer 로 투과율을 측정하였다. 그리고 전기적 특성을 측정하기 위해 Hall effect measurement 및 4-probe를 사용하였으며, 결정성 분석을 위하여 XRD를 이용하여 분석하였다. 표1은 M-IGZO타겟을 사용하여 증착시간에 따른 면저항 특성을 나타내었다. Ge, B, Ba이 첨가된 IGZO 박막은 증착시간이 증가할수록 면저항이 낮아짐을 알 수 있었다. 또한, Ge이 첨가된 IGZO 박막이 다른 금속이 첨가된 IGZO 박막의 면저항보다 현저히 낮음을 알 수 있었다. Fig. 1(a), (b), (c)는 각 타겟을 동일한 조건으로 증착을 하여 광학적특성을 나타내는 그래프이다. GZO 박막의 광학적 특성을 보면 가시광 영역에서 평균 투과율은 모두 80% 이상으로 우수한 광투과 특성을 보여 투명전자소자로 사용가능하다. 특히, 자외선 영역을 모두 차단하는 UV cut 능력이 우수함을 알 수 있었다. 따라서, 금속이 첨가된 IGZO 박막을 태양전지용 투명전극으로 사용할 경우, 자외선에 의하여 수명이 단축되는 현상을 줄여줄 수 있음을 기대할 수 있으며 내구성 향상에 크게 기여할 것으로 보인다. Fig. 2는 Ge=0, 0.5, 5%인 IGZO 투명전극을 총 40회 반복하여 증착을 실시한 후 각각의 면저항을 측정한 결과이다. 실험결과에 따르면 Ge가 0%, 5%인 IGZO 투명전극은 증착을 거듭할수록 면저항이 증가하는 결과를 나타내었으며, 0.5%인 IGZO 투명전극은 점차 안정화되어가는 결과를 나타내었다. 따라서 안정화 되었을 때 평균 면저항은 26ohm/sq.로 나타났으며, 광투과율은 Fig. 3과 같이 가시광영역에서 평균 80%이상의 결과를 보였으며, 550 nm에서는 86.36%의 우수한 특성을 나타내었다. 본 연구에서는 Metal이 첨가된 In-Ga-Zn-O기반의 3성분계 투명도전성 소재 target을 제작하여 RF magnetron sputter로 박막을 형성한 후 특성을 비교하였다. M-IGZO target 중 Ge (0.5%)을 첨가한 IGZO 타겟을 사용한 투명전극이 가장 우수한 특성을 보였으며, 제작된 M-target의 In 비율이 30% 정도로 기존의 ITO (90%) 대비하여 투명전극 제작 단가를 절감할 수 있다.

  • PDF

Nano-mechanical Properties of Nanocrystal of HfO2 Thin Films for Various Oxygen Gas Flows and Annealing Temperatures (RF Sputtering의 증착 조건에 따른 HfO2 박막의 Nanocrystal에 의한 Nano-Mechanics 특성 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kwon, Ku-Eun;Kim, Min-Suk;Eum, Seoung-Hyun;Jung, Hyun-Jean;Jo, Yong-Seok;Park, Seung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.273-278
    • /
    • 2012
  • Over the last decade, the hafnium-based gate dielectric materials have been studied for many application fields. Because these materials had excellent behaviors for suppressing the quantum-mechanical tunneling through the thinner dielectric layer with higher dielectric constant (high-K) than $SiO_2$ gate oxides. Although high-K materials compensated the deterioration of electrical properties for decreasing the thickness of dielectric layer in MOSFET structure, their nano-mechanical properties of $HfO_2$ thin film features were hardly known. Thus, we examined nano-mechanical properties of the Hafnium oxide ($HfO_2$) thin film in order to optimize the gate dielectric layer. The $HfO_2$ thin films were deposited by rf magnetron sputter using hafnium (99.99%) target according to various oxygen gas flows. After deposition, the $HfO_2$ thin films were annealed after annealing at $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for 20 min in nitrogen ambient. From the results, the current density of $HfO_2$ thin film for 8 sccm oxygen gas flow became better performance with increasing annealing temperature. The nano-indenter and Weibull distribution were measured by a quantitative calculation of the thin film stress. The $HfO_2$ thin film after annealing at $400^{\circ}C$ had tensile stress. However, the $HfO_2$ thin film with increasing the annealing temperature up to $800^{\circ}C$ had changed compressive stress. This could be due to the nanocrystal of the $HfO_2$ thin film. In particular, the $HfO_2$ thin film after annealing at $400^{\circ}C$ had lower tensile stress, such as 5.35 GPa for the oxygen gas flow of 4 sccm and 5.54 GPa for the oxygen gas flow of 8 sccm. While the $HfO_2$ thin film after annealing at $800^{\circ}C$ had increased the stress value, such as 9.09 GPa for the oxygen gas flow of 4 sccm and 8.17 GPa for the oxygen gas flow of 8 sccm. From these results, the temperature dependence of stress state of $HfO_2$ thin films were understood.

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Study of optimum growth condition of phase change Ge-Sb-Te thin films as an optical recording medium using in situ ellipsometry (In situ 타원법을 사용한 광기록매체용 Ge-Sb-Te 박막의 최적성장조건 연구)

  • Kim, Sang-Youl;Li, Xue-Zhe
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • The spectroe-ellipsometric constant $\Delta$, Ψ and the ellipsometric growth curves at the wavelength of 632.8 nm are collected. These are critically examined to find out the optimum growth condition of phase change $Ge_2Sb_2Te_5(GST)$ thin films as an optical recording medium. GST films are prepared using DC magnetron sputtering technique, under the selected experimental conditions of Ar gas pressure (5 mTorr, 7 mTorr and 10 mTorr), DC power of sputtering gun (15 W, 30 W and 45 W), and substrate temperature (from room temperature to 18$0^{\circ}C$). Based on the three film model, the density distribution of deposited GST films are obtained versus Ar gas pressure and DC power by analyzing spectro-ellipsometric data. The calculated evolution curves at the wavelength of 632.8 nm, are fit into the in situ observed ones to get information about the evolution of density distribution during film growth. The density distribution showed different evolution curves depending on deposition conditions. The GST films fabricated at DC power of 30 W or 45 W, and at Ar gas pressure of 7 mTorr turned out to be the most homogeneous one out of those prepared at room temperature, even though the maximum density difference between the dense region and the dilute region of the GST film was still significant (~50%). Finally, in order to find the optimum growth condition of homogeneous GST thin films, the substrate temperature is varied while Ar gas pressure is fixed at 7 mTorr and DC power at 30 W and 45 W respectively. A monotonic decrease of void fraction except for a slight increase at 18$0^{\circ}C$ is observed as the substrate temperature increases. Decrease of void fraction indicates an increase of film density and hence an improvement of film homogeneity. The optimum condition of the most homogeneous GST film growth turned out to be 7 mTorr of Ar gas pressure, 15$0^{\circ}C$ of substrate temperature. and 45 W of DC power. The microscopic images obtained using scanning electron microscope, of the samples prepared at the optimum growth condition, confirmed this conclusion. It is believed that the fabrication of homogeneous GST films will be quite beneficial to provide a reliable optical recording medium compatible with repeated write/erase cycles.

Magnetoresistive of (NiFe/CoFe)/Cu/CoFe Spin-Valvec ((NiFe/CoFe)/Cu/CoFe Spin-Valve 박막의 자기저항 특성)

  • 오미영;이선영;이정미;김미양;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.265-273
    • /
    • 1997
  • The MR ratios and the exchange biasing field and interlayer coupling field were investigated in $Ni_{91}Fe_{19}/Co_{90}Fe_{10}/Cu/Co_{90}Fe_{10}/NiO$ spin-valve sandwiches grown on antiferromagnetic NiO films as a function of the NiO thickness, the thickness of Cu and pinning layer $Co_{90}Fe_{10}$. The spin-valve sandwiches were deposited on the Corning glass 7059 by means of the 3-gun dc and 1-gun rf magnetron sputtering at a 5 mtorrpartial Ar pressure and room temperature. The deposition field was 50 Oe. The MR curve was measured by the four-terminal method with applied magnetic soft bilayer [NiFe/CoFe] (90$\AA$) decreased dramatically to less than 10 Oe when the NiFe/CoFe bilayer used an NiFe bilayer thicker that 20$\AA$. So NiFe layer improved the softmagnetic properties in the NiFe/CoFe bilayer. The GMR ratio and the magnetic field sensitivity of the spin-valve film $Ni_{91}Fe_{19}(40{\AA})/Co_{90}Fe_{10}(50{\AA}) /Cu(30{\AA})/Co_{90}Fe_{10}(35{\AA})/NiO(800{\AA})$ was 6.3% and about 0.5 (%/Oe), respectively. The MR ratio had 5.3% below an annealing temperature of 20$0^{\circ}C$ which slowly decreased to 3% above 30$0^{\circ}C$. The large blocking temperature of the spin-valve film was taken (as being) due to the good stability of the NiO films. Thus, the spin-valve films with a free NiFe/CoFe layer clearly had a high large GMR output and showed a effective magnetic field sensitivity for a suitable spin-valve head material.

  • PDF

Analyze of I-V Characteristics and Amorphous Sturcture by XRD Patterns (XRD 패턴에 의한 비정질구조와 I-V 특성분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.16-19
    • /
    • 2019
  • A thinner film has superior electrical properties and a better amorphous structure. Amorphous structures can be effective in improving conductivity through a depletion effect. Research is needed on the Schottky contact, where potential barriers are formed, as a way to identify these characteristics. $SiO_2/SnO_2$ thin films were prepared to examine the amorphous structure and Schottky contact, $SiO_2$ thin films were prepared using Ar = 20 sccm. $SnO_2$ thin films were deposited using mixed gas with a flow rate of argon and oxygen at 20 sccm, and $SnO_2$ thin films were added by magnetron sputtering and treated at $100^{\circ}C$ and $150^{\circ}C$. To identify the conditions under which the amorphous structure was constructed, the XRD patterns were investigated and C-V and I-V measurements were taken to make Al electrodes and perform electrical analysis. The depletion layer was formed by the recombination of electrons and holes through the heat treatment process. $SiO_2/SnO_2$ thin films confirmed that the pores were well formed when heat treated at $100^{\circ}C$ and an electric current was applied over the micro area. An amorphous $SiO_2/SnO_2$ thin film with heat treatment at $100^{\circ}C$ showed no reflection at $33^{\circ}\;2{\theta}$ in the XRD pattern, and a reflection at $44^{\circ}2\;{\theta}$. The macroscopic view (-30 V