DOI QR코드

DOI QR Code

Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film

증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가

  • Chan-Young Kim (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Ha-Eun Lim (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Gaeun Yang (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Sukjeang Kwon (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Chan-Hee Kang (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Sang-Chul Lim (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University) ;
  • Taek Yeong Lee (Department of Advanced Materials Engineering and Semiconductor Fabrication Center, Hanbat National University)
  • 김찬영 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 임하은 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 양가은 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 권숙정 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 강찬희 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 임상철 (한밭대학교 신소재공학과, 반도체소재부품장비센터) ;
  • 이택영 (한밭대학교 신소재공학과, 반도체소재부품장비센터)
  • Received : 2023.01.25
  • Accepted : 2023.03.22
  • Published : 2023.04.27

Abstract

AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.

Keywords

Acknowledgement

The corresponding author was financially supported by Hanbat National University Financial Accounting Research Fund in 2021, and the research was also supported by the Semiconductor Materials and Equipment Center at Hanbat National University.

References

  1. M. Girtan and B. Negulescu, Opt. Mater. X, 13, 100122 (2022).
  2. F. Marangi, M. Lombardo, A. Villa and F. Scotognella, Opt. Mater. X, 11, 10083 (2021).
  3. G. Brunin, F. Ricci, V.-A. Ha, G.-M. Rignanese and G. Hautier, npj Comput. Mater., 5, 63 (2019).
  4. G. K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A. M. S. Krishna, S. Mukhopadhyay, A. Dey, T. K. S. Wong, S. Zhuk, S. Ghosh, S. Chakrabortty, C. Mahata, S. Biring, A. Kumar, C. S. Ribeiro, S. Ramakrishna, A. K. Chakraborty, S. Krishnamurthy, P. Sonar and M. Sharma, J. Mater. Chem. A, 9, 16621 (2021).
  5. R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh and V. Pruneri, Nat. Commun., 7, 13771 (2016).
  6. R. A. Maniyara, C. Graham, B. Paulillo, Y. Bi, Y. Chen, G. Herranz, D. E Baker, P. Mazumder, G. Konstantatos and V. Pruneri, APL Mater., 9, 21121 (2021).
  7. S. Jang, J. S. Jang, E. Jo, V. C. Karade, J. Kim, J. H. Moon and J. H. Kim, Korean. J. Mater. Res., 31, 150 (2021). https://doi.org/10.3740/MRSK.2021.31.3.150
  8. H. S. Lee, J. Y. Cho, S.-M. Youn, C. Jeong and J. Heo, Korean J. Mater. Res., 30, 566 (2020). https://doi.org/10.3740/MRSK.2020.30.10.566
  9. M. Mizuhashi, in Handbook of Transparent Conductors. Springer, edited by D. S. Ginley, H. Hosono and D. C. Paine (Springer, October, 2011) p.524.
  10. M. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 194 (2013).
  11. T. P. Nguyen, P. Le Rendu, N. N. Dinh, M. Fourmigue and C. Meziere, Synth. Met., 138, 229 (2003).
  12. S. Macher, M. Rumpel, M. Schott, U. Posset, G. A. Giffin and P. Lobmann, ACS Appl. Mater. Interfaces, 12, 36695 (2020).
  13. S. Yun, J. Lee, J. Yang and S. Lim, Phys. B., 405, 413 (2010).
  14. S.-J. Young, C.-C. Yang and L.-T. Lai, J. Electrochem. Soc., 164, B3013 (2017).
  15. M. Suja, S. B. Bashar, M. M. Morshed and J. Liu, ACS Appl. Mater. Interfaces, 7, 8894 (2015).
  16. S. Brahama, Y.-W. Yeh, J.-L. Huanag and C.-P. Liu, Appl. Surf. Sci., 564, 150351 (2021).
  17. Z. Ma, F. Ren, X. Ming, Y. Long and A. A. Volinsky, Materials, 12, 196 (2019).
  18. Q. Hou, J. Buckeridge, A. Walsh, Z. Xie, Y. Lu, T. W. Keal, J. Guan, S. M. Woodley, C. R. A. Catlow and A. A. Sokol, Front. Chem., 9, 780935 (2021).
  19. J. L. Lyons, A. Alkauskas, A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 111, 42101 (2017).
  20. G. Haacke, J. Appl. Phys., 47, 4086 (1976).
  21. C. Ji, D. Liu, C. Zhang and L. Guo, Nat. Commun., 11, 3367 (2020).
  22. H. Zhou, J. Xie, M. Mai, J. Wang, X. Shen, S. Wang, L. Zhang, K. Kisslinger, H. Q. Wang, J. Zhang, Y. Li, J. Deng, S. Ke and X. Zeng, ACS Appl. Mater. Interfaces, 10, 16160 (2018). https://doi.org/10.1021/acsami.8b00685
  23. S. Sutthana, N. Hongsith and S. Choopun, Curr. Appl. Phys., 10, 813 (2010).
  24. S. Yu, Y. Liu, H. Zheng, L. Li and Y. Sun, Opt. Lett., 42, 3020 (2017).
  25. M. Kumar, S. M. Baek and J. Kim, Mater. Lett., 137, 132 (2014).
  26. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Pearson Education Limited, Harlow, UK, 2014) p.174.
  27. K. Cho, S. J. Kim and S. Y. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 543 (2012).
  28. B. N. Park, S. Y. Choi and H. J. Kang, J. Korean Inst. Electron. Eng. SD, 40, 1 (2003).
  29. A. Segmuller and M. Murakami, in Analytical Techniques for Thin Films, edited by K. N. Tu & R. Rosenberg (Academic, Boston, U.S.A., 1988) p.143.