• Title/Summary/Keyword: Magnetron

Search Result 3,238, Processing Time 0.028 seconds

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory (다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구)

  • Oh, Woo-Young;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

Enhancements of Crystallization and Opto-Electrical performance of ZnO/Ti/ZnO Thin Films (ZnO/Ti/ZnO 박막의 결정성 및 전기광학적 완성도 개선 연구)

  • Jin-Kyu Jang;Yu-Sung Kim;Yeon-Hak Lee;Jin-Young Choi;In-Sik Lee;Dae-Wook Kim;Byung-Chul Cha;Young-Min Kong;Daeil Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.147-151
    • /
    • 2023
  • Transparent ZnO (100 nm thick) and ZnO/Ti/ZnO (ZTZ) films were prepared with radio frequency (RF) and direct current (DC) magnetron sputtering on the glass substrate at room temperature. During the ZTZ film deposition, the thickness of the Ti interlayer was varied, such as 6, 9, 12, and 15 nm, while the thickness of ZnO films was kept at 50 nm to investigate the effect of the Ti interlayer on the crystallization and opto-electrical performance of the films. From the XRD pattern, it is concluded that the 9 nm thick Ti interlayer showed some characteristic peaks of Ti (200) and (220), and the grain size of the ZnO (002) enlarged from 13.32 to 15.28 nm as Ti interlayer thickness increased. In an opto-electrical performance observation, ZnO single-layer films show a figure of merit of 1.4×10-11 Ω-1, while ZTZ films with a 9 nm-thick Ti interlayer show a higher figure of merit of 2.0×10-5 Ω-1.

Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film (증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가)

  • Chan-Young Kim;Ha-Eun Lim;Gaeun Yang;Sukjeang Kwon;Chan-Hee Kang;Sang-Chul Lim;Taek Yeong Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.142-150
    • /
    • 2023
  • AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

Bottom electrode optimization for the applications of ferroelectric memory device (강유전체 기억소자 응용을 위한 하부전극 최적화 연구)

  • Jung, S.M.;Choi, Y.S.;Lim, D.G.;Park, Y.;Song, J.T.;Yi, J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.599-604
    • /
    • 1998
  • We have investigated Pt and $RuO_2$ as a bottom electrode for ferroelectric capacitor applications. The bottom electrodes were prepared by using an RF magnetron sputtering method. Some of the investigated parameters were a substrate temperature, gas flow rate, RF power for the film growth, and post annealing effect. The substrate temperature strongly influenced the surface morphology and resistivity of the bottom electrodes as well as the film crystallographic structure. XRD results on Pt films showed a mixed phase of (111) and (200) peak for the substrate temperature ranged from RT to $200^{\circ}C$, and a preferred (111) orientation for $300^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of $300^{\circ}C$ and RF power 80W for the Pt bottom electrode growth. With the variation of an oxygen partial pressure from 0 to 50%, we learned that only Ru metal was grown with 0~5% of $O_2$ gas, mixed phase of Ru and $RuO_2$ for $O_ 2$ partial pressure between 10~40%, and a pure $RuO_2$ phase with $O_2$ partial pressure of 50%. This result indicates that a double layer of $RuO_2/Ru$ can be grown in a process with the modulation of gas flow rate. Double layer structure is expected to reduce the fatigue problem while keeping a low electrical resistivity. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Pt and $RuO_2$ was decreased linearly. This paper presents the optimized process conditions of the bottom electrodes for memory device applications.

  • PDF

Electrical Characteristics of Pt/SBT/${Ta_2}{O_5}/Si$ Structure for Non-Volatile Memory Device (비휘발성 메모리를 위한 Pt/SBT/${Ta_2}{O_5}/Si$ 구조의 전기적 특성에 관한 연구)

  • Park, Geon-Sang;Choe, Hun-Sang;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.199-203
    • /
    • 2000
  • $Ta_2_O5$ and $Sr_0.8Bi_2.4Ta_2O_9$ films were deposited on p-type Si(100) substrates by a rf-magnetron sputtering and the metal organic decomposition (MOD), respectively.The electrical characteristics of the $Pt/SBT/Ta_2O_5/Si$ structure were obtained as the functions of $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering and $Ta_2_O5$ thickness. And to certify the role of $Ta_2_O5$ as a buffer layer, the electrical characteristics of $Pt/SBT/Ta_2O_5/Si$ were compared. $Pt/SBT/Ta_2O_5/Si$ capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering did now show typical C-V curve of metal/ferroelectric/insulator/semiconductor (MFIS) structure. The capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering had the largest memory window. And the memory window was decreased as the $Ta_2_O5$ gas flow ratio during the $Ta_2_O5$ sputtering was increased to 40%, 60%. In the C-V characteristics of the $Pt/SBT/Ta_2O_5/Si$ capacitors with the different $Ta_2_O5$ thickness, the capacitor with 26nm thickness of $Ta_2_O5$ had the largest memory window. The C-V and leakage current characteristics of the Pt/SBT/Si structure were worse than those of $Pt/SBT/Ta_2O_5/Si$ structure. These results and Auger electron spectroscopy (AES) measurement showed that $Ta_2_O5$ films as a buffer layer tool a role to prevent from the formation of intermediate phase and interdiffusion between SBT and Si.

  • PDF

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.

Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves (스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향)

  • Kim, K.Y.;Shin, K.S.;Han, S.H.;Lim, S.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2000
  • Top spin valve samples with a structure Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta were deposited on a Si(100) substrate by changing d.c. magnetron sputtering conditions and the exchange-bias and magnetic properties of samples were investigated. The Exchange field, H$\_$ex/ increased with increase of sputtering power of FeMn from 30 to 150 W and CoFe from 30 to 100 W deposited on the Cu, the increase of H$\_$ex/ was found due to the improvement of preferred orientation of (111) FeMn phase from XRD results. In the case of Cu, H$\_$ex/ decreased with the increase of sputtering pressure ranging from 1 to 5 mTorr. The relationship between exchange field and resistance was investigated, spin valve samples with a large exchange field showed the lower resistance, which was strongly dependent on the good crystallinity and grain size increase as well as lower scattering effects. The Cu thickness was changed from 22 to 38 $\AA$ for Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta spin valve structures, MR ratio of 6.5 % and exchange field of about 190 Oe were obtained for the sample with Cu of 22 $\AA$ thickness. The increase of exchange field with decrease of Cu thickness was explained by FM/AFM spin-spin interaction.

  • PDF