• Title/Summary/Keyword: Magnetoelectric voltage coefficient

Search Result 15, Processing Time 0.016 seconds

Magnetoelectric Effect in$CoFe_2O_4-PZT$Composites ($CoFe_2O_4-PZT$ 복합체의 Magnetoelectric 효과)

  • 최임구;권순주;박수현;정윤희
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.285-292
    • /
    • 1997
  • We have studied magnetoelectric effect with cobalt ferrite-Pb(Zr, Ti) $O_3$ composites made by solid state reaction. The maximum magnetoelectric voltage coefficient, $(dE/ dH)_{max}$, increased with longer sintering time and higher volume fraction of the cobalt ferrite. The magnetic field for $(dE/ dH)_{max}$ became lower with increasing the sintering time and decreasing the volume fraction of the cobalt ferrite. The phenomena were explained in terms of grain size change, mechanical coupling efficiency, easiness of magnetization and polarization. We obtained the highest magnetoelectric voltage coefficient of 0.174V/cm-Oe, which is about 30% higher than the best value reported.

  • PDF

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

Load Resistance Influence of Magnetoelectric Characteristics on NiZnFe2O4+PZT Composites for Magnetoelectric Sensors

  • Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.379-386
    • /
    • 2013
  • The influences of the load resistance $R_L$ on the magnetoelectric (ME) characteristics of $NiZnFe_2O_4+PZT$ composite were investigated in the non-resonance frequency range. The ME coefficient peak increases with increasing $R_L$, but the frequency indicating the ME coefficient peak decreases with increasing $R_L$. The maximum output power peak is approximately $9.3{\times}10^{-10}mW/Oe$ near $R_L=3.3M{\Omega}$ at f=280 Hz, and the ME coefficient seems to be saturated at $R_L>20M{\Omega}$. This frequency shift effect of $R_L$ shows that the frequency range for an ME sensor application can be modulated with the appropriate value of $R_L$. The ME output voltage has a good linear response to the ac field Hac and shows fair stability over a range of temperatures. The measured non-linearity of this sample is approximately 0.8%. This sample will allow for a low-strength magnetic ac-field sensor. The result from this sample will serve as basic data for a signal-processing circuit system.

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer

  • Li, Jianzhong;Wen, Yumei;Li, Ping
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.

Piezoelectric/magnetic Properties and Magnetoelectric Effects in (1-x) [0.5PZT-0.25PNN-0.25PZN] - x [Ni0.9Zn0.1Fe2O4] Particulate Ceramic Composites ((1-x) [0.5PZT-0.25PNN-0.25PZN]- x [Ni0.9Zn0.1Fe2O4] 세라믹스의 압전/자성 성질 및 자기전기적 효과)

  • Park, Young-Kwon;Son, Se-Mo;Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.869-874
    • /
    • 2010
  • Magnetoelectric composites with compositions (1-x)[0.5PZT-0.25PNN-0.25PZN](ferroelectric) - x[$(Ni_{0.9}Zn_{0.1})Fe_2O_4$](ferrite) in which x varies as 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared by conventional ceramic process. The presence of two phases (ferroelectric phase with large grain and ferrite phase with small grain) in the particulate ceramic composites was confirmed by XRD, SEM and EDX. The ferroelectric and magnetic properties of the composites were studied by measuring the P-E and M-H hysterisis loop on the composite composition (x=0, 0.1, 0.2, 1), they were strongly affects of the phase content in composite. The magnetoelectric votage was measured as a function of DC magnetic field and the maximum magnetoelectric voltage coefficient of 14 mV/cm Oe was observed in x=0.2(80 mol% ferroelectric and 20 mol% ferrite phase).

Effect of Permeability and Piezomagnetic Coefficient on Magnetostrictive/Piezoelectric Laminate Composite

  • Wu, Zhiyi;Wen, Yumei;Li, Ping;Yang, Jin;Dai, Xianzhi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • The magnetostrictive material is magnetized in magnetic field and produces a nonuniform demagnetizing field inside and outside it. The demagnetization is decided by the permeability of magnetostrictive material and its size. The magnetoelectric performances are determined by the synthesis of the applied and demagnetizing fields. An analytical model is proposed to predict the magnetoelectric voltage coefficient (MEVC) of magnetostrictive/piezoelectric laminate composite using equivalent circuit method, in which the nonuniform demagnetizing field is taken into account. The theoretical and experimental results indicate that the MEVC is positively connected with the permeability and the piezomagnetic coefficient of magnetostrictive material. To obtain the maximum MEVC, both the permeability and the piezomagnetic coefficient of magnetostrictive material should be taken into account in selecting the suitable magnetostrictive material.

Demonstration of Magnetoelectric Coupling Measurement at Off-Resonance and Resonance Conditions in Magnetoelectric Composites (자기전기복합체의 비공진 및 공진 상태에서의 자기전기 결합 특성 평가 방법)

  • Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.333-341
    • /
    • 2022
  • Magnetoelectric (ME) composites are comprised of magnetostrictive and piezoelectric phases. Lots of theoretical and experimental works have been done on ME composites in the last couple of decades. The output performance of ME composites has been enhanced by optimizing the constituent phases, interface layer, dimensions of the ME composites, different operating modes, etc. However, the detailed information about the characterization of ME coupling in ME composites is not provided yet. Therefore, in this tutorial paper, we are giving an insight into the details of measurements of ME voltage coefficient of ME composites both at off-resonance and resonance conditions. A symmetric type Gelfenol/PMN-PZT/Gelfenol ME composites were fabricated by sandwiching (011) 32-mode PMN-PZT single crystal between two Galfenol plates by epoxy bonding are used for the example of ME coupling measurement. The details about the experimental setup used for the measurement of ME voltage coefficient are provided. Furthermore, a step-by-step measurement of ME voltage coefficient using computerized program is demonstrated. We believe the present experimental measurement details can help readers to understand the concept of ME coupling and its analysis.

Magnetoelectric Characteristics on Layered Ni-PZT-Ni, Co, Fe Composites for Magnetic Field Sensor (자기센서용 Ni-PZT-Ni, Co, Fe 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range. The ME coefficient of Ni-PZT-Ni, Ni-PZT-Co and Ni-PZT-Fe composites reaches a maximum of $200mV/cm{\cdot}Oe$ at $H_{dc}=110$ Oe, $106mV/cm{\cdot}Oe$ at $H_{dc}=90$ Oe and $87mV/cm{\cdot}Oe$ at $H_{dc}=160$ Oe, respectively. A trend of ME charateristics on Ni-PZT-Co, Ni-PZT-Fe composites was similar to that of Ni-PZT-Ni composites. The ME output voltage shows linearly proportional to ac field $H_{ac}$ and is about 0~150 mV at $H_{ac}$=0~7 Oe and f=110 Hz in the typical Ni-PZT-Ni sample. The frequency shift effect due to the load resistance $R_L$ shows that the frequency range for magnetic field sensor application can be modulated with appropriate load resistance $R_L$. This sample will allow for a low-magnetic ac field sensor in the low-frequency (near f=110 Hz).