DOI QR코드

DOI QR Code

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping (The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education, China College of Optoelectronic Engineering, Chongqing University) ;
  • Wen, Yumei (The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education, China College of Optoelectronic Engineering, Chongqing University) ;
  • Jia, Chaobo (The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education, China College of Optoelectronic Engineering, Chongqing University) ;
  • Li, Xinshen (The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education, China College of Optoelectronic Engineering, Chongqing University)
  • Received : 2011.05.31
  • Accepted : 2011.06.29
  • Published : 2011.09.30

Abstract

This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

Keywords

References

  1. C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410
  2. S. X. Dong, J. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 2265 (2003). https://doi.org/10.1063/1.1611276
  3. P. Li, Y. M. Wen, and L. X. Bian, Appl. Phys. Lett. 90, 022503 (2007). https://doi.org/10.1063/1.2431469
  4. S. X. Dong, J. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 4812 (2003). https://doi.org/10.1063/1.1631756
  5. P. Li and Y. M. Wen, Proc. of the Third IEEE International Conference on Sensors 99 (2004).
  6. P. Li, Y. M. Wen, L. X. Bian, J. Yang, and Y. Zhu, IEEE Sensors Journal 8, 517 (2008).
  7. X. G. Wang, Z. F. Jiang, and Y. F. Hu, Sixth World Congress on Intelligent Control and Automation 5125 (2006).
  8. C. W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett. 78, 2527 (2001). https://doi.org/10.1063/1.1367293
  9. N. Nersessian, S. W. Or, and G. P. Carman, IEEE Trans. Magn. 40, 2646 (2004). https://doi.org/10.1109/TMAG.2004.832171
  10. F. Yang, Y. M. Wen, P. Li, M. Zheng, and L. X. Bian, Sensors and Actuators A 141, 129 (2008). https://doi.org/10.1016/j.sna.2007.08.004
  11. J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J.-M. Liu, Appl. Phys. Lett. 86, 202504 (2005). https://doi.org/10.1063/1.1935040
  12. S. X. Dong, J. Y. Zhai, F. M. Bai, Jiefang Li, D. Viehland, and T. A. Lograsso, J. Appl. Phys. 97, 103902 (2005). https://doi.org/10.1063/1.1899247
  13. S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 84, 4188 (2004). https://doi.org/10.1063/1.1756676
  14. L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and M. Zheng, Sensors and Actuators A 150, 207 (2009). https://doi.org/10.1016/j.sna.2009.01.003
  15. P. Li, Y. M. Wen, P. G. Liu, X. S. Li, and C. B. Jia, Sensors and Actuators A 151, 100 (2010).
  16. H. Itoh and Y. K. Yong, 2000 IEEE/EIA Conference 420 (2000).

Cited by

  1. An Upconversion Management Circuit for Low-Frequency Vibrating Energy Harvesting vol.61, pp.7, 2014, https://doi.org/10.1109/TIE.2013.2278954