• Title/Summary/Keyword: Magneto resistance

Search Result 63, Processing Time 0.023 seconds

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake (MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

Ferromagnetism and Magnetotransport of Be-codoped GaMnAs (Be-codoped GaMnAs의 상온 강자성 및 자기 수송 특성)

  • Im, W.S.;Yu, F.C.;Gao, C.X.;Kim, D.J.;Kim, H.J.;Ihm, Y.E.;Kim, C.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.213-218
    • /
    • 2004
  • Be-codoped GaMnAs layers were systematically grown via molecular beam epitaxy with varying Mn- and Be-flux. Mn flux was controlled to cover from solid solution type GaMnAs to precipitated GaMnAs. Two Be flux were chosen to exhibit semiconducting and metallic resistivity in the grown layers. The structural, electrical, and magnetic properties of GaAs:(Mn, Be) were investigated. The lightly Be-codoped GaMnAs layers showed ferromagnetism at room temperature, but did not reveal magnetotransport due to small magneto-resistance and high resistance of the matrix. However, room temperature magnetotransport could be observed in the degenerate Be-codoped GaMnAs layers, and which was assisted by the high conductivity of the matrix. The Be-codoping has promoted segregation of new ferromagnetic phase of MnGa as well as MnAs.

Design of 64-Bit Guide Sensor for Automatic Guided Vehicle (무인운반차용 16비트 가이드 센서 설계)

  • Lee, Ju-Won;Cho, Su-Hyeon;Lee, Dong-Chang;Kang, Seong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.915-916
    • /
    • 2015
  • The main sensor of AGV is the guide sensor in order to detect the path, and the sensor consists of 8 or 16-magneto resistance devices arranged by with 10mm. In controlling the AGV posture by using the sensor, AGV is occurred left/right shaking frequently. So, for driving stability of AGV, An accuracy of the sensor should be improved. Therefore, this study proposed sensor signal processing method to improve accuracy of guide sensor, and implemented. The accuracy of sensor in experimentation showed 2.84[mm]. In designing the sensor for controlling AGV posture, the proposed method will be effective.

  • PDF

Metal-Insulator Transition Induced by Short Range Magnetic Ordering in Mono-layered Manganite

  • Chi, E.O.;Kim, W.S.;Hong, C.S.;Hur, N.H.;Choi, Y.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.573-578
    • /
    • 2003
  • The structural, magnetic, and transport properties of a mono-layered manganite $La_{0.7}Sr_{1.3}MnO_{4+{\delta}}$ were investigated using variable temperature neutron powder diffraction as well as magnetization and transport measurements. The compound adopts the tetragonal I4/mmm symmetry and exhibits no magnetic reflection in the temperature region of 10 K ≤ T ≤ 300 K. A weak ferromagnetic (FM) transition occurs about 130 K, which almost coincides with the onset of a metal-insulator (M-I) transition. Extra oxygen that occupies the interstitial site between the [(La,Sr)O] layers makes the spacing between the [MnO₂] layers shorten, which enhances the inter-layer coupling and eventually leads to the M-I transition. We also found negative magneto resistance (MR) below the M-I transition temperature, which can be understood on the basis of the percolative transport via FM metallic domains in the antiferromagnetic (AFM) insulating matrix.

Optimum design analysis of ICP(Inductively Coupled Plasma) torch for high enthalpy thermal plasma flow (고엔탈피 열유동 발생용 고주파 유도결합 플라즈마 토치의 최적 설계변수 해석)

  • Seo, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.316-329
    • /
    • 2012
  • In this paper, optimum design process of ICP (Inductively Coupled Plasma) torch, which has been used widely in aerospace application, such as supersonic plasma wind tunnel, is presented. For this purpose, the behaviors of equivalent circuit parameters (equivalent resistance and inductance, coupling efficiency) were investigated according to the variations of torch design parameters (frequency, $f$, confinement tube radius, $R$ and coil turn numbers, $N$) in the basis of analytical and numerical MHD (Magneto Hydro-Dynamics) models combined with electrical circuit theory. From the results, it is found that equivalent resistance is increased with the increase of $f$ values but vice versa for equivalent inductance. For elevated values of $R$ and $N$, however, both parameters tend to increase. Based on these observations, ICP torch with a power level of 10 kW can be optimized at the design ranges of $f$=4~6 MHz, $R$=17~25 mm and $N$=3~4 to maximize the electrical coupling efficiency, which is the ratio of equivalent resistance to equivalent inductance.

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots (FePt 자기 양자점 터널링 소자의 전기적 특성과 자기적 특성 연구)

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

Magnetoresistance in Post-annealed Bi Thin Films on PbTe-buffered CdTe(111)B and on Mica Substrates (PbTe/CdTe(111)B와 마이카 기판 위에 성장된 Bi 박막의 후열처리 전후의 자기저항)

  • Kim Yun-Ki;Choi Jin-Sung;Li Hai-Bo;Cho Sung-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.367-373
    • /
    • 2006
  • We have observed a large increase in the magnetoresistance (MR) of Bi thin films, which were subjected to a post-annealing procedure at $268^{\circ}C$C, $3^{\circ}C$ below the Bi melting point. We have achieved an increase in the MR by 260-fold and 1200-fold at 5 K and 5 T after post-annealing, as compared with 190 and 620 for an as-deposited Bi film on PbTe/CdTe(111) and on mica, respectively. The large MR increase by post-annealing might be due to the improvement of crystallinity according to the x-ray analysis. However, post-annealing over a certain amount time showed the reduction in MR values.

Galvanomagnetic electromotive force effect of Magnetic $Ni_{53}-Fe_{47}$ Thin Films ($Ni_{53}-Fe_{47}$ 자성박막의 신형전류자기 기전력효과)

  • Jung, Han;Son, Hee-Young;Kim, Mee-Yang;Jang, Hyun-Suk;Rhee, Jang-Roh;Lee, Yong-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.272-276
    • /
    • 1994
  • A new Galvanomagnetic electrorootive force effect of $Ni_{53}-Fe_{47}$ thin films is studied. The dependence of this effect on $\theta$, angle between the current and the magnetic field, is found to be the form of sin $2\theta$, in contrast with that of the magneto resistance effect cas $2\theta$ and that of the Hall effect sin $\theta$. Property of this effect is that lthe rate of the voltage variation depending on the magnetic field is extremely large as compared with the magnetiresistance effect. It is theoretically confirmed that this effect is well understood on the basis of the two carrier types model.

  • PDF