• Title/Summary/Keyword: Magnetizing Frequency

Search Result 59, Processing Time 0.02 seconds

High Power Density 50kW Bi-directional Converter for Hybrid Electric Vehicle HDC (하이브리드 자동차용 HDC를 위한 50kW급 고전력밀도 양방향 컨버터)

  • Yang, Jung-Woo;Keum, Moon-Hwan;Choi, Yoon;Han, Sang-Kyoo;Kim, Seok-Joon;Kim, Sam-Gyun;Kim, Jong-Pil;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • This paper proposed a high-power density bidirectional converter for hybrid electric vehicle high-voltage DC-DC converter(HDC). The conventional HDC has two disadvantages. First, large inductance is required to satisfy the ripple current of inductor by low switching frequency (<20 kHz). Second, large core size is required to prevent the saturation of inductor by high current. Compared with the conventional HDC, the proposed HDC can reduce inductance with SiC-FET for high frequency driving. High-power density of I/O capacitors can be achieved through two-phase interleaved method. The high-power density of inductors can be achieved because the offset current of magnetizing inductance is theoretically terminated by using the differential mode coupled inductor instead of using two single inductors. The validity of the proposed converter is proved through the 50 kW prototype.

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

High Switching Frequency and High Power Density Three-Level LLC Resonant Converter using Integrated Magnetics (Integrated Magnetics를 적용한 고속 스위칭 및 고전력밀도 3 레벨 LLC 공진형 컨버터)

  • Nam, Kyung-Hoon;Park, Chul-Wan;Bae, Ji-Hun;Ji, Sang-Keun;Ryu, Dong-Kyun;Choi, Heung-Gyoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.551-554
    • /
    • 2017
  • This paper proposes a three-level LLC resonant converter using integrated magnetics (IM). Given that the switch voltage stress of the proposed converter is guaranteed to be half of the input voltage, the switching losses can be greatly reduced, thereby benefitting the high-frequency operation. To reduce the volume of reactive components such as transformers, high-frequency driving and planar core are applied. However, two resonant inductors and one transformer are required because of the three-level structure and the limited leakage inductance of the planar transformer for the resonant operation. Therefore, the effect of volume reduction is not very large. In order to solve these drawbacks, this paper proposes a new IM that integrates all magnetic elements used in the proposed three-level resonant converter by using the magnetizing inductor as a resonant inductor. The experimental results are presented by conducting a theoretical analysis of a prototype with 350 W to 800 kHz.

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Minimization of a CW CO2 Laser Output Ripple by using High Frequency Resonance Phenomena (고주파 공진현상을 이용한 CW CO2 레이저의 출력리플 최소화)

  • Sikander, Sakura;Kwon, Min-Jae;Kim, Hee-Je;Lee, Dong-Gil;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.798-802
    • /
    • 2013
  • In a conventional DC power supply used for CO2 laser, the circuit elements such as a rectifier bridge, a current-limiting resistor, a high voltage switch, energy storage capacitors ans a high-voltage isolation transformer using high turn ratio are necessary. Consequently, those supplies are expensive and require a large space. Thus, laser resonator and power supply should be optimally designed. In this paper, we propose a new power supply using high frequency resonance phenomena for CW(Continuous wave) CO2 laser (maximum output of 23W with discharge length of 450mm). It consists of a transformer including leakage inductance, magnetizing inductance and half-bridge converter, a three-stage Cockcroft-Walton and PFC(Power factor correction) circuit. The output ripple voltage can be controlled the minimum of 0.24% under the high frequency switching of 231kHz. Furthermore, the output efficiency was improved to 16.4% and the laser output stability of about 5.6% was obtained in this laser system.

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

Analysis of a New Current-Fed DC-DC Converter with the Double Outputs (이중출력을 갖는 새로운 전류환류형 DC-DC 컨버터의 해석)

  • Hong, S.M.;Kim, C.S.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2033-2036
    • /
    • 1997
  • In this paper, we proposed a novel current-fed DC-DC converter with multi-output. It has two winding reactor in series with the input source of the converter. By using the 2nd winding recycling the energy stored in the reactor to the input, the double-outputs DC-DC converter can be created, which makes it a good choice for a multi-output power supply with more outputs and has savings in cost and space. The steady state and dynamic characteristics of the converter are analyzed in detail by using the state space averaging method. It is found that the maximum value of $V_{o2}$ exists in the 2nd output and also during the MOSFET off period, the energy stored in the magnetizing inductance is reset through auxiliary winding $N_3$, so the duty cycle is restricted to 50%. Theoretical and experimental results were taken from the converter rated at switching frequency 50kHz. input voltage 50V. output voltage 5V. 12V and output power 65W. As a result, both results were well consistent. Therefore, it is varified the validity of the proposed converter in this paper.

  • PDF

High Efficiency Vector Control of Induction Motor Using Optimal Flux Control (최적 자속 제어를 이용한 유도진동기의 백터 제어형 고효율 속도 제어)

  • Joo, Hyeong-Gil;Kim, Kyeong-Hwa;Chung, Se-Kyo;Hong, Chan-Ho;Bae, Jung-Do;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.579-581
    • /
    • 1994
  • The efficiency optimized speed control system of Induction Motor is proposed At light load, the IM has poor efficiency because of relatively high magnetizing current. In this paper, by employing the field oriented control with flux controller which the motor is operated at optimal slip frequency, the proposed system has good performance and high efficiency. In simulation, the performance, loss and efficiency of the proposed optimal flux control system are compared with those of the coventional constant flux operation. In conclusion, the efficiency is raised by 2.55%, the loss is decreased by 0.1[p.u].

  • PDF

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module (고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터)

  • Lee Woo-Jin;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF