• Title/Summary/Keyword: Magnetic stimuli

Search Result 46, Processing Time 0.029 seconds

Anterior Cingulate Cortex and Amygdala Dysfunction Among Patients with Alcohol Dependency During Exposure to Negative Emotional Stimuli

  • Park, Mi-Sook
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.103-112
    • /
    • 2018
  • This study aimed to identify specific psychological and brain activation responses relating to the processing of negative emotions in patients with alcohol dependency. The authors hypothesized that patients with alcohol dependency would demonstrate the abnormal functioning of brain regions involved in negative emotions. Eleven male patients diagnosed with alcohol dependence in an inpatient alcohol treatment facility and 13 social drinkers with similar demographics were scanned using functional magnetic resonance imaging (fMRI) as they viewed film clips that evoked negative emotions. During exposure to negative emotional stimuli, the control group evinced significantly greater activity in the right anterior cingulate cortex (ACC) in comparison to patients with alcohol dependency. Correlation analyses demonstrated a negative association in the relationship between beta values from the right ACC and amygdala in participants classified in the control group. No statistically significant relationship was observed for blood oxygenation level-dependent (BOLD) changes between the two regions in the patient group during the elicitation of negative emotions. On the other hand, patients exhibited a greater activation of the amygdala as negative emotions were induced. These results suggest that alcoholism presents pathophysiology of brain activation that is distinct from the responses of healthy individuals functioning as controls.

Chopper Application for Magnetic Stimulation

  • Choi, Sun-Seob;Lee, Sun-Min;Kim, Jun-Hyoung;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.213-220
    • /
    • 2010
  • Since the hypothalamus immediately reacts to a nerve by processing all the information from the human body and the external stimulus being conducted, it performs a significant role in internal secretion; thus, a diverse and rapid stimulus pulse is required. By detecting Zero Detector accurately via the application of AVR on-Chip (ATMEL) using commercial electricity, chopping generates a stimulus pulse to the brain using an IGBT gate to designate a new magnetic stimulation following treatment and diagnosis. To simplify and generate a diverse range of stimuli for the brain, chopping can be used as a free magnetic stimulator. Then, commercial frequency (60Hz) is chopped precisely at the first level of the leakage transformer to deliver an appropriate stimulus pulse towards the hypothalamus when necessary. Discharge becomes stable, and the chopping frequency and duty-ratio provide variety after authorizing a high-pressure chopping voltage at the second level of the magnetic stimulator. These methods have several aims. The first is to apply a variable stimulus pulse via accurate switching frequency control by a voltaic pulse or a pulse repetition rate, according to the diagnostic purpose for a given hypothalamus. Consequently, the efficiency tends to increase. This experiment was conducted at a maximum of 210 W, a magnetic induced amplitude of 0.1~2.5 Tesla, a pulse duration of $200{\sim}350\;{\mu}s$, magnetic inducement of 5 Hz, stimulus frequency of 0.1~60 Hz, and a duration of stimulus train of 1~10 sec.

Language Lateralization Using Magnetoencephalography (MEG): A Preliminary Study (뇌자도를 이용한 언어 편재화: 예비 연구)

  • Lee, Seo-Young;Kang, Eunjoo;Kim, June Sic;Lee, Sang-Kun;Kang, Hyejin;Park, Hyojin;Kim, Sung Hun;Lee, Seung Hwan;Chung, Chun Kee
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • Backgrounds: MEG can measure the task-specific neurophysiologic activity with good spatial and time resolution. Language lateralization using noninvasive method has been a subject of interest in resective brain surgery. We purposed to develop a paradigm for language lateralization using MEG and validate its feasibility. Methods: Magnetic fields were obtained in 12 neurosurgical candidates and one volunteer for language tasks, with a 306 channel whole head MEG. Language tasks were word listening, reading and picture naming. We tested two word listening paradigms: semantic decision of meaning of abstract nouns, and recognition of repeated words. The subjects were instructed to silently name or read, and respond with pushing button or not. We decided language dominance according to the number of acceptable equivalent current dipoles (ECD) modeled by sequential single dipole, and the mean magnetic field strength by root mean square value, in each hemisphere. We collected clinical data including Wada test. Results: Magnetic fields evoked by word listening were generally distributed in bilateral temporoparietal areas with variable hemispheric dominance. Language tasks using visual stimuli frequently evoked magnetic field in posterior midline area, which made laterality decision difficult. Response during task resulted in more artifacts and different results depending on responding hand. Laterality decision with mean magnetic field strength was more concordant with Wada than the method with ECD number of each hemisphere. Conclusions: Word listening task without hand response is the most feasible paradigm for language lateralization using MEG. Mean magnetic field strength in each hemisphere is a proper index for hemispheric dominance.

  • PDF

Functional MRI of Language: Difference of its Activated Areas and Lateralization according to the Input Modality (언어의 기능적 자기공명영상: 자극방법에 따른 활성화와 편재화의 차이)

  • Ryoo, Jae-Wook;Cho, Jae-Min;Choi, Ho-Chul;Park, Mi-Jung;Choi, Hye-Young;Kim, Ji-Eun;Han, Heon;Kim, Sam-Soo;Jeon, Yong-Hwan;Khang, Hyun-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • Purpose : To compare fMRIs of visual and auditory word generation tasks, and to evaluate the difference of its activated areas and lateralization according to the mode of stimuli. Materials and Methods : Eight male normal volunteers were included and all were right handed. Functional maps were obtained during auditory and visual word generation tasks in all. Normalized group analysis were performed in each task and the threshold for significance was set at p<0.05. Activated areas in each task were compared visually and statistically. Results : In both tasks, left dominant activations were demonstrated and were more lateralized in visual task. Both frontal lobes (Broca's area, premotor area, and SMA) and left posterior middle temporal gyrus were activated in both tasks. Extensive bilateral temporal activations were noted in auditory task. Both occipital and parietal activations were demonstrated in visual task. Conclusion : Modality independent areas could be interpreted as a core area of language function. Modality specific areas may be associated with processing of stimuli. Visual task induced more lateralized activation and could be a more useful in language study than auditory task.

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

Penalized logistic regression using functional connectivity as covariates with an application to mild cognitive impairment

  • Jung, Jae-Hwan;Ji, Seong-Jin;Zhu, Hongtu;Ibrahim, Joseph G.;Fan, Yong;Lee, Eunjee
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.603-624
    • /
    • 2020
  • There is an emerging interest in brain functional connectivity (FC) based on functional Magnetic Resonance Imaging in Alzheimer's disease (AD) studies. The complex and high-dimensional structure of FC makes it challenging to explore the association between altered connectivity and AD susceptibility. We develop a pipeline to refine FC as proper covariates in a penalized logistic regression model and classify normal and AD susceptible groups. Three different quantification methods are proposed for FC refinement. One of the methods is dimension reduction based on common component analysis (CCA), which is employed to address the limitations of the other methods. We applied the proposed pipeline to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data and deduced pathogenic FC biomarkers associated with AD susceptibility. The refined FC biomarkers were related to brain regions for cognition, stimuli processing, and sensorimotor skills. We also demonstrated that a model using CCA performed better than others in terms of classification performance and goodness-of-fit.

Manganese-Enhanced MRI Reveals Brain Circuits Associated with Olfactory Fear Conditioning by Nasal Delivery of Manganese

  • Yang, Ji-ung;Chang, Yongmin;Lee, Taekwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2022
  • Purpose: The survival of organisms critically depends on avoidance responses to life-threatening stimuli. Information about dangerous situations needs to be remembered to produce defensive behavior. To investigate underlying brain regions to process information of danger, manganese-enhanced MRI (MEMRI) was used in olfactory fear-conditioned rats. Materials and Methods: Fear conditioning was conducted in male Sprague-Dawley rats. The animals received nasal injections of manganese chloride solution to monitor brain activation for olfactory information processing. Twenty-four hours after manganese injection, rats were exposed to electric foot shocks with odor cue for one hour. Control rats were exposed to the same odor cue without foot shocks. Forty-eight hours after the conditioning, rats were anesthetized and their brains were scanned with 9.4T MRI. Acquired images were processed and statistical analyses were performed using AFNI. Results: Manganese injection enhanced brain areas involved in olfactory information pathways in T1 weighted images. Rats that received foot shocks showed higher brain activation in the central nucleus of the amygdala, septum, primary motor cortex, and preoptic area. In contrast, control rats displayed greater signals in the orbital cortex and nucleus accumbens. Conclusion: Nasal delivery of manganese solution enhanced olfactory signal pathways in rats. Odor cue paired with foot shocks activated amygdala, the central brain region in fear, and related brain circuits. Use of MEMRI in fear conditioning provides a reliable monitoring technique of brain activation for fear learning.

Fuctional MRI for Phobic Stimuli: Comparison study between Post Traumatic Stress Disorder (PTSD) and Control groups

  • 박지강;박종익;이호규;문찬흥;유재욱
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.106-106
    • /
    • 2001
  • 목적: 일반인과 외상성 스트레스 장애환자들(PTSD)에서 동일한 공포 자극에 대한 기능적 뇌 자기ㆍ공명영상에서 뇌 활성화 부위의 차이를 알아보고자 하였다. 대상 및 방법: 대조군 (여자9명)과 외상성 스트레스 장애로(PTSD) 진단된 환자군 (여자9명)을 대상으로 하였고 모두 오른손잡이였다. 외상성 스트레스 장애군은 모두 교통사고와 관련되어 있었다. 1.5T MR 기기에서 EPI BOLD 기법을 이용하여 24개의 axial slice를 얻었으며, 시각자극으로 교통사고 현장 사진과 비교군으로 체크 무의 사진을 무작위로 배열하여 각각 1초씩 보여 주었다 (event related design). SOA (Stimulus Onset Asynchrony)는 3.5초로 하였고 전체 영상은 10분 동안 얻었다. 모든 환자에서 기능적 자기공명 영상은 1차례 시행하였다. 영상후 처리는 SPM 분석 프로그램을 사용하였으며 황성화 신호의 유의수준은 p=0.01을 기준으로 활성화 영상을 얻었다. 활성화 신호를 육안으로 비교 분석하였고 해마, 편도핵, 전전두엽의 활성화 정도를 중심으로 평가하였다.

  • PDF

f-MRI with 2D & 3D Visual Stimuli

  • 김치영;김남주;문길영;임종우;정성택;최보영;신경섭;안창범
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.141-141
    • /
    • 2001
  • 목적: 최근 들어 컴퓨터 그래픽의 발전과 함께 가상 현실 등에 연구 및 응용이 급증하고 있다. 본 연구의 목적은 fMRI를 이용하여 이차원 및 삼차원 시각자극에 대한 뇌의 기능을 살펴보는 것이다. 같은 영상에 대한 2D와 3D영상을 보여 주면서, fMRI 영상 데이터를 얻었다. 사람에게 미치는 자극 중에 하나인 시각 자극에서 2D와 3D에 대해 반응하는 차이를 규명하고자 하였다. 대상 및 방법: Gradient echo를 기반으로 한 EPI 영상기법을 이용하여, 가톨릭 의대의 3.0 Tesla whole body MRI system에서 실험하였다. 해부학적 영상을 얻기 위해서는 spin echo를 이용하였다. 4명의 volunteer에 대해 같은 영상에 대한 2D와 3D영상을 보여주면서 실험을 수행하였다. 시각자극의 paradigm은 5단계 (rest, active, rest, active, rest)로 하였고, 3번의 rest와 2번의 active구간을 사이에 두었다. 각각의 구간은 10번의 iteration으로 이루어져 있고, 첫 번째 구간은 15번으로 하여 처음 5개의 결과를 버리고, 데이터를 얻었다. 결과는 spm99를 이용하여 분석하였다.

  • PDF

f-MRI with 2D & 3D Visual Stimuli

  • 김치영;김남주;문길영;임종우;정성택;최보영;신경섭;안창범
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.110-110
    • /
    • 2001
  • 목적: 최근 들어 컴퓨터 그래픽의 발전과 함께 가상 현실 등에 연구 및 응용이 급증하고 있다. 본 연구의 목적은 fMRI를 이용하여 이차원 및 삼차원 시각자극에 대한 뇌의 기능을 살펴보는 것이다. 같은 영상에 대한 2D와 3D영상을 보여 주면서, fMRI 영상 데이터를 얻었다. 사람에게 미치는 자극 중에 하나인 시각 자극에서 2D와 3D에 대해 반응하는 차이를 규명하고자 하였다. 대상 및 방법: Gradient echo를 기반으로 한 EPI 영상기법을 이용하여, 가톨릭 의대의 3.0 Tesla whole body MRI system에서 실험하였다. 해부학적 영상을 얻기 위해서는 spin echo를 이용하였다. 4명의 volunteer에 대해 같은 영상에 대한 2D와 3D영상을 보여주면서 실험을 수행하였다. 시각자극의 paradigm은 5단계 (rest, active, rest, active, rest)로 하였고, 3번의 rest와 2번의 active구간을 사이에 두었다. 각각의 구간은 10번의 iteration으로 이루어져 있고, 첫 번째 구간은 15번으로 하여 처음 5개의 결과를 버리고, 데이터를 얻었다. 결과는 spm99를 이용하여 분석하였다.

  • PDF