• Title/Summary/Keyword: Magnetic sensor

Search Result 1,069, Processing Time 0.035 seconds

Magneto-Impedance Effect of CoFeSiBNi Amorphous Magnetic Films according to the size (CoFeSiBNi 아몰퍼스 합금의 소자 크기에 대한 자기-임피던스 효과 관찰)

  • Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.339-341
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials with high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show us a good impedance change(about 3.05%/Oe, at 12MHz) by the exterior magnetic field in this experiment. These are produced by rapid solidification from the melt and the material is ejected in a jet from a nozzle and quenched in a stream of liquid. After that, we make them a shape of wire with different sizes of width. Thus, we can find that the impedance change (122.16%, at 12MHz) is occurred and the fabricated magnetic wire has the characteristics of good sensor element.

  • PDF

FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System (소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서)

  • Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.

Magnet Position Sensor System using Hall Sensors (홀센서를 이용한 자석의 위치인식 센서 개발)

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.2
    • /
    • pp.166-172
    • /
    • 2011
  • This paper presents a sensor system which recognizes the location of a magnet using cheap hall sensor. The proposed methods measure magnetic field from a magnet using model equation, analyze the property of horizontal and vertical magnetic field, and decide the method of sensor arrangement. And, this paper proposes the algorithm which infers the location of a magnet from the measured magnetic field that relates the position between the magnet and the hall sensor, and calculate theoretical error, which is found to be no more than 0.0025cm. The results actually measured show that the measured error no more than 0.07cm and confirm that proposed systems are highly applicable to the various situations.

Implementation of Wireless Micro-Magnetic Detection System in the Conveyer Belt (컨베어 이송장치에서의 무선 미소자기감지 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2975-2981
    • /
    • 2014
  • Micro-magnetic detection system is used to detect small particles in an automatic transmission valve body, which signal noise and time-delay may occurs in process of signal transmitting and filtering. In this paper, we present the design and implement of a micro-magnetic detection system based on wireless sensor networks in conveyer belt. Micro-magnetic detection system consists of five modules which are magnetic sensor detector, signal processing unit, wireless sensor networks, system control unit and system monitoring unit. Our experimental results show that the proposed wireless micro-magnetic detection system improves both accuracy and time delay compared to the wired system; therefore, it may apply for wireless micro-magnetic detection system by analysis of packet reception rate.

Magnetoelectric Characteristics on Layered Fe78B13Si9/PZT/Fe78B13Si9 Composites for Magnetic Field Sensor (자기센서용 Fe78B13Si9/PZT/Fe78B13Si9 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • The magnetoelectric characteristics on layered $Fe_{78}B_{13}Si_9/PZT$ and $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9$($t_m=0.017$, 0.034mm) composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range and resonance frequency range. The optimal bias magnetic field $H_{dc}$ of these samples was about 23~63 Oe range. The Me coefficient of $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9(t_m=0.034mm)$ composites reaches a maximum of $186mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, f=50 Hz and a maximum of $1280mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, resonance frequency $f_r=95.5KHz$. The output voltage shows linearity proportional to ac fields $H_{ac}$ and is about U=0~130.6 mV at $H_{ac}=0{\sim}7Oe$, f=50 Hz, U=0~12.4 V at $H_{ac}=0{\sim}10Oe$, $f_r=95.5KHz$(resonance frequency). The optimal frequency(f=50 Hz) of this sample is around the utility ac frequency(f=60 Hz). Therefore, this sample will allow for ac magnetic field sensor at utility frequency and low bias magnetic fields $H_{dc}$.

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

A Study on Metal Surface Thickness Detection Using Indsctive Proximity Sensor (유도성 근접센서를 통한 금속표면 두께 검출에 관한 연구)

  • Park, Hwa-Beom;Lee, Seung-Jae;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.231-234
    • /
    • 2007
  • The magnetic sensor using electromagnetic principle. which transfers magnatic into electric. is the electric component.It has been widely applied to the industry, university and the reseach. However there are some problems. Not only the korean domestic sensor manufacture skills are still lower then the advanced manufacture's but also production of sensor is not well organized yet. Due to cahnging excitation cvurrent, excitation freq and the rate magnetic permeability core, there sometimes would be distorted phenomena or loaded phenomena which result in limited measurment range. Therefore, the signal conversion device should support to receive undistorted and nice output. This paper focuses on both the design of signal transform circuit using inductive proximity sensor and the signal transfer equipment (Z device) which detects thickness of painted material.

  • PDF

A Study on the System Design for Measuring the Property of Broadband AC Magnetic Sensors (광대역 교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.685-686
    • /
    • 2015
  • This paper describes design results of the measurement system to test the properties of broadband AC magnetic field sensors used in weapon system. This measurement system consists of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and measurement & analysis controller including the operating software. This system is able to measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency of 1 Hz to 10 kHz. The performance of this system was verified by measuring and analyzing the property of a MAG 639, standard magnetic field sensor of bartington instruments, with this developed system.

  • PDF

Examining the qualification of copper magnetic nanocatalyst design and its application in piezoelectric sensor

  • Yufeng Pang;Xiaojuan Li
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.743-753
    • /
    • 2023
  • Piezoelectricity is defined as the ability of certain materials to produce electric signals when mechanically stressed or to deform when an electrical potential is applied. Piezo technology is becoming increasingly crucial as intelligent devices use vibration sensors to detect vibrations in consumer electronics, the automotive industry, architectural design, and other applications. A wide range of applications is now possible with piezoelectric sensors, such as skin-attachable devices that monitor health and detect diseases. In this article, copper nanoparticles are used in the piezoelectric sensor as the driving agent of the magnetic field. Magnetic nanocatalysts containing copper nanoparticles are used due to their cheapness and availability. Considering that the increase of the electric field acting on the piezoelectric increases the damping (As a result, damping materials reduce radiation noise and increase material transfer losses by altering the natural vibration frequency of the vibrating surface). Among the advantages of this method are depreciating a significant amount of input energy using high energy absorption capacity and controlling slight vibrations in the sensors.

The Position Decision Experiment of Magnetic Sensor in Ball-screw Driven Linear Stage (볼나사 구동 리니어 스테이지의 마그네틱 센서 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.10-14
    • /
    • 2013
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decision. Though ball-screw driven linear stages equipped linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decision if they have not equipped the accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a magnetic sensor as a home switch of ball-screw driven linear stage by using capacitance probe.