• Title/Summary/Keyword: Magnetic material

Search Result 1,951, Processing Time 0.03 seconds

Introduction to Neutron Scattering for Magnetic Materials Research (자성소재 연구를 위한 중성자산란 입문)

  • Jeong, Jae-Hong;Lee, Sang-Hyun;Park, Je-Geun
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.103-108
    • /
    • 2012
  • Having a de Broglie wavelength of a few ${\AA}$ with its corresponding energies in the range of a few to a few hundreds meV, neutrons are ideally suited for the studies of structure and dynamics in condensed matter research. Neutron scattering has been developed over the past 60 years or so and become a very mature and established experimental technique in the very broad range of material sciences. In this short introductory article, we have explained its working principles and provided few selected examples of application.

Development of Somaloy Components for a BLDC Motor in a Scroll Compressor Application

  • Persson, Mats;Nord, Goran;Pennander, Lars-Olov;Atkinson, Glynn;Jack, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.804-805
    • /
    • 2006
  • Electric scroll-compressor drives are commonly used for e.g. home appliance cooling units. The recent development of hybrid cars with internal combustion engine in combination with electrical propulsion requires new solutions to be able to cool the passenger compartment of cars at stand-still. Both application areas demand efficient motor drives to reach good economy and efficient use of limited battery power as well as competitive volume/weight for a given output. The BLDC motor is a controllable and efficient solution. A major part of the motor is the soft-magnetic core. The powder based $Somaloy^{(R)}$ material shows high resistivity and induction as the result of engineered iron particles with in-organic coating. The unique features of compacted $Somaloy^{(R)}$ components can be utilized to enhance the shape and total volume of the BLDC motor with at least maintained efficiency compared to the use of traditional laminated steel sheet cores. A careful design of the $Somaloy^{(R)}$ components can also simplify assembly and positively influence the coil configuration. This study shows a comparison between a typical laminated BLDC motor and a redesigned, $Somaloy^{(R)}$ based version adapted for a scroll-compressor application.

  • PDF

Experimental Verification of Induction Phenomenon on Telecommunication Lines by Applying Its Occurrence Mechanisms Using an Artificial ELF Source Generator

  • Lee, Sang-Mu;Gimm, Yoon-Myoung;Eun, Chang-Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.276-281
    • /
    • 2010
  • In this paper, an electromagnetic induction on a telecommunication line by the distribution line of a power provision system or a feeder line of an electrified railway system has been verified through experiments. The basic cause of induction occurrence by these practical power provision systems is the returning current through the earth. This principle has been confirmed by the experiments documented in this paper which implemented these mechanisms to incur an induction. Experimental methods were used to produce the returning current through the earth. The experiment to find a relationship between inducing strength and the distance between the two phase lines in a power provision line has also been included to confirm that, when the distance is enlarged, the induction effect increases as the cross-nullification effect of magnetic fluxes decreases. An experiment for the existence of a shielding effect by another conduction length material has been addedas a protection measure against the induction.

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

Analsis of Preponderant Wear of Earth Brush for an Electrical Multiple Units(EMUs) (전동차용 접지브러쉬 편중마모에 대한 해석)

  • Park, Byung-Sup;Ku, Jung-Su;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.356-361
    • /
    • 2005
  • Earth brush for electrical multiple units(EMUs) is a device through which the current of the EMU load's consumed power fed from the DC 1,500V overhead line (or from the AC 25.000V catenary) flows via axle to the rail(ground) and which prevents the electric corrosion of the axle bearings by preventing the current flow to the axle bearings caused by electric potential from the magnetic field when the bearings rotate together with the earthing function when a thunderbolt falls or a surge comes. The earth brush wear rates among cars, however, shows quite differences when the earth brushes after being separated from the holders are measured with vernier callipers every 6 months of maintenance period. Main causes of the earth brush wear are divided as mechanical, electric arc and electrical one, and the factors can be running speed, current, harmonics, connection state. spring tension, earth brush material, lubricant and so on. but only the earth brushes of the motor(M1) car show the highest wear rate and moreover maintenance difficulty occurs because of the wear rate differences among e earth brushes in one holder. The reason for these preponderant wear comes from the design concept of making preponderant current flow to some particular earth brushes and moreover the heat generated by the harmonics when the inverter starts to operate accelerate the wear. By defining these causes through experiments. I hope that the found results would be helpful for the future EMU design, safety, economy and maintenance.

  • PDF

The Synthesis of Cellulose-graft-poly (L-lactide) by Ring-opening Polymerization and the Study of Its Degradability

  • Dai, Lin;Xiao, Shu;Shen, Yue;Qinshu, Baichuan;He, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4122-4126
    • /
    • 2012
  • Cellulose-graft-poly (L-lactide) (cellulose-g-PLLA) was successfully prepared via ring-opening polymerization (ROP) by using 4-dimethylaminopyridine (DMAP) as an organic catalyst in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). The structure and morphology of the polymer was characterized by nuclear magnetic resonance (NMR) and transmission electron microscope (TEM). From wide-angle X-ray powder diffraction (WAXD) and degradation test (by acid, alkaline, PBS and enzyme solution), changes in the crystalline structure as a result of degradation was also investigated. The results indicated that materials which have low degree of crystallinity showing higher degradability, however, in acid liquor, enzyme solution, alkaline liquor and PBS system, the degradation rate of the polymer decreased by the above sequence. Moreover, with the further increase of graft degree of this material, its degradation degree decreased.

Control of Material Properties and Magnetism of Electroplated Nickel-iron Thin Films (전기도금법을 이용한 니켈-철 박막의 물성과 자성 조절)

  • Seo, Ho-Young;Nam, Kyung-Ho;Hong, Ki-Min
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.42-44
    • /
    • 2012
  • We have studied a means to control the composition of nickel-iron thin films. By changing current and voltage applied to a electroplating electrolyte we could manipulate the relative concentration of nickel and iron in the thin films, which caused variations of coercivity, squareness, and saturation magnetic field. As we increase the content of iron in the thin films by using potentiostatic and galvanostatic plating, the grain size was increased and the coercivity was reduced.

Chucking Method of Substrate Using Alternating Chuck Mechanism (반도체 기판 교차 파지 방법)

  • Ahn, Young-Ki;Choi, Jung-Bong;Koo, Kyo-Woog;Cho, Jung-Keun;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Typically, single-wafer wet etching is done by dispensing chemical onto the front and back side of spin wafer. The wafer is fixed by a number of chuck pins, which obstruct the chemical flow and would result in the incomplete removal of the remaining film, which can become a source of contamination in the next process. In this paper, we introduce a novel design of wafer chuck, in which chuck pins are groupped into two and each group of pins fixes the substrate alternatively. Two groups of chuck pins fix the high-speed spin substrate with non contact method using a magnetic material. The actual process has been executed to observe the effectiveness of this new wafer chuck. It was found that the new wafer chuck performed better than the conventional wafer chuck for removing the remaining film from the bevel and edge side of substrate.

  • PDF

Collective effect of hydrogen in argon and Mg as ambiance for the heat treatment on MgB2

  • Sinha, B.B.;Jang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.24-28
    • /
    • 2014
  • Magnesium diboride superconductor is still of considerable interest because of its appealing characteristics towards application mainly at around 20 K. Unlike Nb-based superconductors, $MgB_2$ can be operated by cryogen-free cooler which provides a cost effective alternative at low field of around 2-5 T. To explore this operating field region considerable efforts are necessary to marginally improve the superconducting properties of $MgB_2$. Under this situation, even the heat treatment environment during the synthesis is considered as an important factor. The addition of $H_2$ gas in small amount with Ar as a mixed gas during annealing has an adverse effect on the superconducting properties of $MgB_2$. It is although interesting to find that the presence of Mg vapor along with hydrogen during heat treatment results in the appreciable improvement in the flux pinning and the overall response of the critical current density for the ex-situ $MgB_2$ samples.