• Title/Summary/Keyword: Magnetic inrush

Search Result 39, Processing Time 0.021 seconds

Simulation and analysis of the magnetic inrush for the 765kV transformer using EMTP-RV (EMTP-RV를 이용한 765kV 변압기의 여자 돌입 현상 모의 및 분석)

  • Kang, Yong-Cheol;Lee, Mi-Sun;Lee, Byung-Eun;Jang, Sung-Il;Kim, Yong-Gyun;Ju, Haeng-Ro;Yu, Yeong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.157-159
    • /
    • 2008
  • This paper describes modeling and analysis of magnetic inrush for a 765kV transformer using EMTP-RV. EMTP-RV generates the core flux and thus helps show the behavior of the core, i.e. hysteresis characteristics. The results of three kinds of the magnetic inrush such as initial inrush, sympathetic inrush, and recovery inrush are included. This modelling can help the design of a protection relay for a transformer.

  • PDF

A Transformer Protection Relay Based on Induced Voltages

  • Kang, Yong-Cheol;Lee, Byung-Eun
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.70-78
    • /
    • 2003
  • This paper describes a transformer protection relay based on induced voltages. The ratio of the induced voltages of the primary and secondary windings is equal to the turns ratio during normal operating conditions such as magnetic inrush, overexcitation, and steady state, but it differs from the turns ratio in the case of internal faults. For a single-phase and a three-phase Y-Y transformer, the induced voltages are estimated and the ratios are compared with the turns ratio. For three-phase Y-Δ transformers, the differences between the induced voltages are estimated to use the line currents because delta-winding currents are practically unavailable. The proposed relay is tested under various conditions such as magnetic inrush, internal winding faults, overexcitation, and different core characteristics. The results evidently indicate that the relay successfully discriminates internal faults from magnetic inrush and overexcitation. This paper concludes by implementing the relay into a TMS320C6701 digital signal processor and reports satisfactory results. The relay requires no hysteresis data and can reduce the operating time of a relay.

An analysis of limiting conditions of excess inrush currents and a derivation of the probability equations of inrush current occurrence (돌입전류의 제어조건 해석 및 돌입전류 발생 확률식의 유도)

  • 박영문
    • 전기의세계
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 1965
  • Because of the flat slope of the magnetic characteristic curves at high saturation, the transformer inrush current peakes may assume an extreme magnitude. Even though such is rarely any danger to the transformer itself, the currents can cause serious problems in associated apparatus. This paper has analyzed various limiting factors of excess inrush currents, and then has suggested how to determine the frequency of encountering the inrush current peaks higher than an arbitrarily chosen value by deriving the probability equations of inrush current occurrence.

  • PDF

Magnetic Flux Saturation Analysis of Matching Transformer Considering Characteristic of Dynamic Voltage Restorer(DVR) (DVR의 특성을 고려한 매칭변압기의 자속포화 해석)

  • Shon, Jin-Geun;Kim, Dong-Joon;Kang, Min-Gu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.236-243
    • /
    • 2008
  • This paper analyses magnetic flux saturation of matching transformer considering characteristic of dynamic voltage restorer(DVR) system to solve voltage sags which are considered the dominant disturbances affecting power quality. This DVR consist of PWM inverter to inject arbitrary voltage, LC low pass filter and matching transformer for isolation and grid connection. However, the matching transformer has an excess of inrush current by magnetic flux saturation in the core of transformer. Due to this inrush current, the rating of matching transformers is double for needed nominal rating for protection of DVR. Therefore, in this paper, an advanced modeling method of magnetic flux saturation is used to analyze a magnitude and characteristic of magnetizing current. Simulation and experimental results considering characteristic of DVR system are provided to demonstrate the validity of the proposed analysis method.

A Study on Optimum control for Inrush current of Microwave Oven using Statistical Method (통계적 방법에 의한 전자레인지의 돌입전류 최적화 연구)

  • 이민기;고강훈;권순걸;이현우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.61-67
    • /
    • 2001
  • Magnetic flux saturation dependent on phase of initial input power to high voltage transformer used in Micro wave oven. To limit inrush current high voltage transformer the relay contact should be ˝ON˝ when the lowest point of input voltage phase. The improved circuit is form compensating interrupt signal Micom input so the relay contact can be ˝ON˝ when the inrush current is lower. Test results are presented that improved circuit satisfies the limit 50[A] of requirement for input voltage variation mode. And the result verified by statistical method.

  • PDF

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Modified-Current-Differential Relay for Transformer Protection

  • Kang Yong-Cheol;Jin En-Shu;Won Sung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.1-8
    • /
    • 2005
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a significant exciting current, which can cause malfunction of a current-differential relay. This paper proposes a modified-current-differential relay for transformer protection. The relay calculates the core-loss current from the induced voltage and the core-loss resistance as well as the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. A comparative study of the conventional differential relay with harmonic blocking is presented. The proposed relay not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the relay speed.

The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter (자기결합형 고온초전도한류기의 과도전류 해석)

  • Joo, Min-Seok;Chu, Yong;Yim, Do-Hyun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

Inrush Current Control of Matching Transformer for Dynamic Voltage Restorer (동적전압보상기를 위한 정합 변압기의 돌입전류 제어)

  • Seo, Il-Dong;Jeon, Hee-Jong;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.340-348
    • /
    • 2006
  • This paper proposes an inrush current control technique of matching transformer for configuration of dynamic voltage restorer(DVR). The DVR system consist of PWM inverter to inject arbitrary voltage, LC low pass filter as harmonic eliminator and matching transformer for isolation. However, the matching transformer has an excess of inrush current by magnetic flux saturation in the core. Due to this inrush current, the rating of matching transformers is double for needed nominal rating for protection of DVR. Therefore, in this paper, the modeling method of magnetic flux saturation is used to analyze a magnitude of inrush current, and additional current controller is used for PWM inverter output regulation. Simulation and experimental results are provided to demonstrate the validity of the proposed control method.

Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux (잔류자속에 무관한 변압기 보호용 수정전류차동 계전기)

  • 강용철;김은숙
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.