• Title/Summary/Keyword: Magnetic induction

Search Result 582, Processing Time 0.022 seconds

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF

Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method (회전 자계에 의한 철손의 유한요소 해석)

  • Lee, H.Y.;Park, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Fabrication of Planar Type Inductor Using FeTaN Magnetic thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.532-538
    • /
    • 2000
  • A double rectangular spiral inductor is fabricated using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of upper magnetic films over coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance : inductance of 1.1 H, Q factor of 7 (at 5 MHz), and the dc current capability up to 100 mA.

  • PDF

The Analysis of a TFLIM for Electro-magnetic Levitation and Propulsion (자기부상(부(浮上) 및 추진(推進) 겸용 TFLIM의 해석)

  • Jang, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.37-40
    • /
    • 1987
  • In transverse flux linear induction motors(TFLIM), The loops of the working flux lie in planes transverse to the direction of motion. With a poly-phase primary winding, The TFLIMs has both electro-magnetic propulsion and levitation force. Thus, TFLIM a will be useful in high speed ground transportation systems. In this paper, The characteristics of a single aide TFLIM are analysed by using electromagnetic field theory.

  • PDF

The Analysts of PerformaneeCharacterlstics of a L.I.M. with taken into Conslderatlon of End Effects(l) (단부효과를 고려한 L.I.M.의 동작특성 해석 (1))

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.288-295
    • /
    • 1982
  • In this study, the characteristic equation of a double sided short stator linear induction motor, referred to as LIM excited by equivalent current sheet having linear current density was derived using Maxwell's electromagnetic field theory with its entry and exit, end effects taken into consideration. According to the treatment of several physical phenomena in the air-gap i.e. the magnetic flux density distributions, thrust-force, forward and backward travelling wave with decay, normal field, the fundamental data in this study are made reference to improve the characteristics of LIM, effectual electro-magnetic energy conversion devices.

  • PDF

A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

  • Kim, Jin Sook;Kim, Chun Hyeok
    • Korean Journal of Audiology
    • /
    • v.18 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.

A Study On The Performances Of A Single-Phase Motor With Non-Quadrature Stator Windings Using Domestic Magnetic Materials. (국산자기재료를 이용한 비대칭자속분포 단상유도기구)

  • Min Ho Park
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.41-47
    • /
    • 1972
  • The requirements of a successful design for single phase induction motors with a high efficiency have, in recent years, led to the use of non-quadrature stator windings motors in which a high starting torque is a prime requisite. The capacitor motor is one of above machines in which various possible forms of asymmetry can be occur. These forms of asymmetry in the stator phase windings, encountered in machine designs, are 1) an asymmetrical disposition in space of their magnetic axes, 2) a difference in their effective number of turns, 3) a difference in the distribution of their coil groups per pole and 4) amounts of capacitance of an auxiary winding. In order to apply the effective performance prediction of these form to motors, mading of lower quality-domestic magnetic materials, the analysis and the experimental investigations of its sample motors are described in this paper. The utility of such a motor is demonstrated and it is shown that the effects- a good efficiency, good power factor and high starting torque-of the motor mechanism with non-quadrature stator phase windings can development disadvantages by using the lower quality-domestis magnetic materials.

  • PDF

Characteristic Analysis on the Induction Motor using Magnetic Wedge (자성웨지를 사용한 유도전동기의 특성해석)

  • Im, Dal-Ho;Hong, Jung-Pyo;Im, Young-Hun;Shin, Heung-Gyo;Choi, Jong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.171-173
    • /
    • 1994
  • Magnetic wedge is proposed for improving the motor performance and to reduce the ripple of air gap flux. Carter's coefficient plays very important role when the ampere turns or exciting current is calculated. In this paper, we calculate the Carter's coe. by FEM taking into account the magnetic anisotropy of magnetic wedge in simple manner and analyze the effect of the wedge. And we analyze the slot leakage flux according to the wedge property.

  • PDF