Magnetic hysteresis loop investigated by terahertz magnetic resonance in canted antiferromagnetic YFeO₃

KIM Tae-heon^{1*}, KANG Chul², KEE Chul-Sik², TOKUNAGA Yusuke³, TOKURA Yoshinori^{3,4}, LEE Jong Seok¹

¹Department of Physics and Photon Science, Gwang ju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea

²Advanced Photonics Research Institute (APRI), Gwangju 500-712, Republic of Korea

³RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

⁴Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

We investigate a free induction decay (FID) process for the canted antiferromagnetic YFeO₃ single crystal after the resonant excitation of a ferromagnetic mode located at about 0.3 THz. Employing terahertz time-domain spectroscopy (THz TDS), we used two wire-grid polarizers with polarization of +45 or -45 degree from y-axis of the c-cut parallel crystal plate, and could obtain the FID signals excluding a strong contribution of the transmitted THz wave. By varying the magnetic field strength applied along the c-axis of the sample, we could observe the hysteresis behavior of FID signals which are in good agreement with the results obtained by other conventional techniques, such as a magneto-optic Kerr effect measurement and vibrating sample magnetometry. By examining the FID process in detail, we discuss the spin dynamics which are possibly contributed to by a domain distribution, particularly by magnetic domain walls.

Keywords :canted antiferromagnet, free induction decay, YFeO₃, hysteresis