• Title/Summary/Keyword: Magnetic field sensor.

Search Result 488, Processing Time 0.021 seconds

A Method and System to Compensate Vertical Component of 3-Axes Magnetic Field Sensor Using the Earth's Field (지구자계를 이용한 3축 자계센서의 수직성분 자계 보정방법 및 장치)

  • Jeong Yeong-Yun;Im Dae-Yeong;Yu Yeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.241-244
    • /
    • 2006
  • 본 논문은 지구자계를 이용하여 3축 자계센서의 수직 성분자계를 보정하는 방법과 장치를 제안한다. 자계센서는 설치각도 및 이득오차에 의해 출력 특성이 변화한다. 따라서 자계센서를 사용하기에 앞서 보정이 필요하다. 지구에서 발생되는 지구자계를 이용하여 간편하게 센서의 설치각도 및 이득오차에 의한 영향을 보정하였으며 이를 위한 장치를 설계하였다. 제안한 방법은 실험을 통하여 실용성을 검증하였다.

  • PDF

A Study on the Magnetic Field Analysis and Optimal Core Design of DC Current Sensor for Vehicles (자동차용 DC Current Sensor의 자장해석 및 코어 최적형상 설계에 관한 연구)

  • Lee, Hee-Sung;Park, Jong-Min;Kim, Choon-Sik;Kim, Sung-Gaun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.74-83
    • /
    • 2009
  • Recently, usage of electric and electronic system for car increases rapidly. Consequently power monitoring supplied to the system is essential for management and controlling. Generally, battery status is monitored through measuring and diagnosing the current measurement method utilizing Hall Effect. Therefore, in this paper, we analysed magnetic field to develop the solution of DC current sensor using Hall Effect which is the core of design and development. By analysing the magnetic field by FEM using Maxwell 3D software, the location of the highest output current and stable part in the Hall IC sensor was shown. Also, the optimal core design of DC current sensor using parametric and Simplex method was presented. A car battery charge and discharge process dependant on time effect on the changing of magnetic field was simulated and compared to the result from the experiment result of actual vehicle.

Magnet Location Estimation Technology in 3D Using MI Sensors (MI센서를 이용한 3차원상 자석 위치 추정 기술)

  • Ju Hyeok Jo;Hwa Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.

Magnetoelectric Characteristics on Layered Ni-PZT-Ni, Co, Fe Composites for Magnetic Field Sensor (자기센서용 Ni-PZT-Ni, Co, Fe 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range. The ME coefficient of Ni-PZT-Ni, Ni-PZT-Co and Ni-PZT-Fe composites reaches a maximum of $200mV/cm{\cdot}Oe$ at $H_{dc}=110$ Oe, $106mV/cm{\cdot}Oe$ at $H_{dc}=90$ Oe and $87mV/cm{\cdot}Oe$ at $H_{dc}=160$ Oe, respectively. A trend of ME charateristics on Ni-PZT-Co, Ni-PZT-Fe composites was similar to that of Ni-PZT-Ni composites. The ME output voltage shows linearly proportional to ac field $H_{ac}$ and is about 0~150 mV at $H_{ac}$=0~7 Oe and f=110 Hz in the typical Ni-PZT-Ni sample. The frequency shift effect due to the load resistance $R_L$ shows that the frequency range for magnetic field sensor application can be modulated with appropriate load resistance $R_L$. This sample will allow for a low-magnetic ac field sensor in the low-frequency (near f=110 Hz).

Magnetic Field Properties About Core Change (코어 변화에 대한 자계 특성)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • In this paper, it tried to develop the core sensor for detection of micro magnetic field in electric wires. The sensor is non contact type and is consisted of ferrite core for low price. To investigate their properties for variations of current, it changed the number of winding and the length of sample core, it examined, to check the live wire situation in built-in wires, electrical characteristics due to difference between electric wires and core sensor. As the results, it verified live wire situation at the number of winding(5,000) and within length of 6[cm]. Also, it obtained magnetic field magnitude decreased inverse proportion ratio to a square about difference between electric wires and core sensor.

Development of magnetic field measurement system for AMS cyclotron

  • Ho Namgoong;Hyojeong Choi;Mitra Ghergherehchi;Donghyup Ha;Mustafa Mumyapan;Jong-Seo Chai;Jongchul Lee;Hoseung Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3114-3120
    • /
    • 2023
  • A high-accuracy magnetic field measurement device based on a cyclotron is being developed for accelerator mass spectrometry (AMS). In this study, a magnetic field measurement device consisting of a Hall probe sensor, piezo-motor, and step motor was developed to measure the magnetic field of the AMS cyclotron magnet. The Hall probe sensor was calibrated to achieve positional accuracy by using polar coordinates. The measurement results between the ratchet gear and piezo-motor, which are the instruments used for driving the measurement device, were analyzed. The measurement result of the device with a piezo-motor exhibits a difference of 5 Gauss (0.04%) as compared with the simulation result.

Fabrication of 3-dimensional magnetic sensor by anisotropic etching in TMAH (TMAH에 의한 이방성 식각을 이용한 3차원 자기센서의 제작)

  • Jung, Woo-Chul;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.308-313
    • /
    • 1999
  • This paper will present an anisotropic etching in TMAH technique used in the fabrication of three-dimensional magnetic field vector sensor based on angled Hall plate structure. This sensor design relies on simultaneously detecting all magnetic field vector components using Hall plates that are imbedded into the silicon [111] sloped-surface of bulk micromachined cavity by the anisotropic etching of [100] silicon. The fabricated Hall elements has relatively improved sensitivity compare to convensional Hall elements for three-dimensional magnetic field sensing. The product sensitivity of 547V/AT at the supply current of 1.0mA was achived. The corresponding limit in the detection of magnrtic field is 0.07G that calculated by measured power spectral density(PSD) in magnetic sensor output.

  • PDF

Positioning sensor system for mobile robots using magnetic markers (마그네틱 마커를 이용하는 이동로봇을 위한 위치인식 센서 시스템)

  • Kim, Eui-Sun;Kim, Won-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.221-229
    • /
    • 2010
  • In recent studies, many methods have been studied for mobile robot using magnetic markers on its pathway. This is not influenced by the weather conditions, and makes possible to develop controller with low level processors and simple algorithms. However, the interval between magnets is restricted by the magnetic field intensity and it is impossible to get road information ahead. This paper suggests a method of widening markers and expressing the road information ahead using magnetic markers, and explains a sensor arrangement considering suggested methods. Also, magnetic field analysis was done to investigate the effects of widening magnetic markers with various environments. A small mobile robot was made to figure out the performance of suggested methods, and driving experiments were performed on the straight and curved road with magnetic markers. The results show that the robot moved the prearranged pathway with 0.5 cm lateral displacements and stopped at a stop line using magnetic information on the road.

The Development of Magnetic Field Measurement System of 3 Axis (3축 자계 측정 시스템의 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.253-257
    • /
    • 2017
  • Nowadays, it is increasingly important to detect whether cables are live for the operator's safety if there is a sudden power failure. It is especially hard to detect the electrical field of an underground line because of shielding. This paper on detection of live-line states in cables studied the detection characteristics of the change in the magnetic field and axis as the frequency, voltage, and distance at the same load are changed using 3 axes. A search coil type was used as a magnetic field sensor with non-contact. We found that magnetic fields decrease proportionally to the square of the distance and the decrease of rated voltage with load effected to magnetic field. The magnetic field was detected by 3-axis sensors given correct proximity, but appeared as noise components beyond a distance of 2 cm.

Implementation of Optical Magnetic Field Sensor for Measurement of Over Current (과전류 계측을 위한 광자계센서의 구현)

  • Park, Hae-Soo;Roh, Jong-Dae;Kim, Yo-Hee;Park, Byung-Seok;Ahn, Seong-Joon;Jo, Hong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1871-1873
    • /
    • 1997
  • The conventional current transformers are often take faults and out of order that for detect to over current of electric power lines because electromagnetic interference. But, it is possible to implement protection relay of high reliability using optical magnetic field sensor which are immunity and small size. The optical magnetic field sensor is possible to rapidly detect to over current and recover when electric power line have fault. And it is not necessary to make with capacitance of electric power lines as optical magnetic field sensor is have linearity from 0 to about 20kA. In this study, we designed and constructed compensative feedback circuit in order to minimize of optical power intensity variation with environ- mental variations(temperature, drive current) of light source. And this system have highest optical advantages and reliability.

  • PDF