• 제목/요약/키워드: Magnetic distribution

검색결과 1,297건 처리시간 0.024초

Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer

  • Son, Jaeman;Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Chie, Eui Kyu;Yoon, Jeongmin;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제29권2호
    • /
    • pp.47-52
    • /
    • 2018
  • To investigate the effect of low magnetic field on dose distribution in SABR plans for liver cancer, we calculated and evaluated the dose distribution to each organ with and without magnetic fields. Ten patients received a 50 Gy dose in five fractions using the $ViewRay^{(R)}$ treatment planning system. For planning target volume (PTV), the results were analyzed in the point minimum ($D_{min}$), maximum ($D_{max}$), mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$), and 100% ($V_{100%}$) of the prescription dose, respectively. For organs at risk (OARs), the duodenum and stomach were analyzed with $D_{0.5cc}$ and $D_{2cc}$, and the remained liver except for PTV was analyzed with $D_{mean}$, $D_{max}$, and $D_{min}$. Both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$, and $D_{mean}$, respectively. For PTV, the maximum change in volume due to the presence or absence of the low magnetic field showed a percentage difference of up to $0.67{\pm}0.60%$. In OAR analysis, there is no significant difference for the magnetic field. In both shell structure analyses, although there are no major changes in dose distribution, the largest value of deviation for $D_{max}$ in the outer shell is $2.12{\pm}2.67Gy$. The effect of low magnetic field on dose distribution by a Co-60 beam was not significantly observed within the body, but the dose deposition was only appreciable outside the body.

DEM numerical study on mechanical behaviour of coal with different water distribution models

  • Tan, Lihai;Cai, Xin;Ren, Ting;Yang, Xiaohan;Rui, Yichao
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.523-538
    • /
    • 2021
  • The mechanical behaviour and stability of coal mining engineering underground is significantly affected by ground water. In this study, nuclear magnetic resonance imaging (NMRI) technique was employed to determine the water distribution characteristics in coal specimens during saturation process, based on which the functional rule for water distribution was proposed. Then, using discrete element method (DEM), an innovative numerical modelling method was developed to simulate water-weakening effect on coal behaviour considering moisture content and water distribution. Three water distribution numerical models, namely surface-wetting model, core-wetting model and uniform-wetting model, were established to explore the water distribution influences. The feasibility and validity of the surface-wetting model were further demonstrated by comparing the simulation results with laboratory results. The investigation reveals that coal mechanical properties are affected by both water saturation coefficient and water distribution condition. For all water distribution models, micro-cracks always initiate and nucleate in the water-rich area and thus lead to distinct macro fracture characteristics. With the increase of water saturation coefficient, the failure of coal tends to be less violent with less cracks and ejected fragments. In addition, the core-wetting specimen is more sensitive to water than specimens with other water distribution models.

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

파쇄대와 지하의 빈 공간에 의한 지자기이상 (Geomagnetic Anomalies by Underground Fracture Zones and Vacant Spaces)

  • 이문호
    • 한국자기학회지
    • /
    • 제20권2호
    • /
    • pp.52-60
    • /
    • 2010
  • 지하에 존재하는 파쇄대와 빈 공간 및 터널이 지상에서의 자속밀도분포에 미치는 영향과 심도에 따른 자기이상의 변화를 조사하였다. 파쇄대와 빈 공간 및 지하터널이 있는 지표상에서의 자속밀도분포를 플럭스게이트형 마그네토미터를 사용하여 조사하였다. 지하에 존재하는 파쇄대는 지표면으로부터 높이 0.15 m에서의 자력분포에 (+)피크와 (-)피크로 이루어진 피크 쌍(peak pairs) 형태의 자기이상을 나타내는데, 이러한 자기이상은 지상으로부터 1.15 m의 높이에서는 그 강도가 현저하게 감소한다. 지하의 빈공간에 의하여 자속밀도가 감소하는 자기이상이 발생하며, 지하공간의 심도가 깊을수록 자속밀도의 감소정도가 줄어든다. 이러한 자속밀도 감소 현상을 이용하면 지하에 존재하는 터널과 싱크홀과 같은 빈 공간의 존재와 규모를 탐사할 수 있을 것으로 보인다.

Influence of the Galactic Magnetic Field on the Distribution of Ultra-high-Energy Cosmic Rays

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.3-38.3
    • /
    • 2015
  • Recently, the Pierre Auger Observatory (PAO), the largest ground-based project for detecting ultra-high-energy cosmic rays (UHECRs), published their 10-year data. We can access an unprecedented number of UHECR data observed by the project, which give us a possibility to get an accurate statistical test result. In this work, we investigate the influence of the galactic magnetic field (GMF) on the distribution of UHECRs by searching the correlation with the large-scale structure (LSS) of the universe. We simulate the mock UHECR events whose trajectories from the sources would be deflected by the Gaussian smearing angle which reflects the influence by the GMF. By the statistical test, we compare the correlation between the expected/observed distribution of UHECRs and the LSS of the universe in the regions of sky divided by the galactic latitude, varying the smearing angle. Here, we assume the deflections by the GMF are mainly dependent on the galactic latitude. Using the maximum likelihood estimation, we find the best-fit smearing angle in each region. If we get a trend that best-fit smearing angles differ from each region, the influence of GMF may be stronger than that of intergalactic magnetic fields (IGMF) because it is known that the distribution of IGMF follows the LSS of the universe. Also, we can estimate the strength of the GMF using the best-fit parameter by the maximum likelihood.

  • PDF

고온초전도 회전계자형 동기전동기의 3차원 동특성 해석 (Three Dimensional Dynamic Analysis of High-Tc Superconducting Revolving Field Type Synchronous Motor)

  • 이상진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.438-441
    • /
    • 1999
  • One of the most important aspect in developing High-Tc Superconducting Synchronous Motor is producing high-Tc superconducting tapes that withstand the amount of currents that is needed to run the motor with stability. The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this goal, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. By analyzing the field distribution acquired through the computer simulation, it has been observed whether the high-Tc superconducting tape maintains its superconductivity in actual motor operation. Also, the effects of the flux damper on the motor's operational characteristics and the magnetic field distribution have been analyzed. As a result, it has been proved that the high-Tc superconducting tapes can withstand 600 A turns which is required by the previous simulation aimed at developing this motor. It has also seen that the flux damper reduces armature reactance during the motor operation and change of load, helping the stable motor operation.

  • PDF

전자기 전달관계를 이용한 슬롯리스형 영구자석 전기기기의 정특성 해석 (Analysis on Static Characteristics of Slotless Type Permanent Magnet Electrical Machines Using the Electromagnetic Transfer Relations)

  • 장석명;최장영;이성호;조한욱
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권3호
    • /
    • pp.138-145
    • /
    • 2006
  • It is well known that the accurate calculation of the field distribution is essential for the design of electrical machines. The analytical techniques for electromagnetic field can quickly and exactly determine airgap magnetic field distribution in electrical machines. Many analytical techniques have been investigated to predict the magnetic field distribution in PM machines equipped with permanent magnets. Using the analytical technique by transfer relations, D. L. Trumper and K. R. Davey already presented the design and analysis of linear permanent-magnet machines and induction machines, respectively. Using the transfer relations (Melcher's general methodology) to describe electromagnetic phenomena, this paper deals with the analysis on the magnetic field distribution due to PM and winding current, the induced voltage and the static torque characteristics in surface-mounted slotless type permanent magnet machine. The validity of the analysis results is confirmed by finite element (FE) analysis.

전자척의 고정압력분포에 관한 실험적 연구 (Experimental Study on the chuncking Pressure Distribution of Electro-Magnetic Chucks)

  • 김청균
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 1996
  • This paper deals with the distributions of magnetic flux of an electro-magnetic chuck which is one of the most commonly used chucking attachments in a surface grinding machine. The measured results showed good correspondence with the theoretical results which were previously presented by the same author. The normal and tangential components of the magnetic flux density were measured using the gauss meter. The measured results indicated that the magnetic flux density was periodically changing over the transverse position to the magnetic pole. The normal component of magnetic flux decreases very rapidly for the increased z position.

  • PDF

BiPbSrCaCuO 초전도 벌크의 Magnetic Suspension (Magnetic Suspension Effect of BiPbSrCaCuO Superconducting Bulk)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.545-551
    • /
    • 2004
  • Magnetic suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O. Magnetic flux measurements of a toroidal magnet revealed a concave shaped field distribution with a null field along the axis of the torus at the point where the field reversed. The suspension effect was observed only for the Ag$_2$O doped and field cooled sample which is attributed to the enhanced flux pinning due to the field cooled condition. It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the magnetic suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the magnetic suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향 (Effects of structure and morphology of anodized Al thin film on magnetic properties)

  • 권용덕;박용수
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF