• Title/Summary/Keyword: Magnetic coupling coefficient

Search Result 50, Processing Time 0.024 seconds

Extraction Solution for the Coupling Coefficient at the Magnetically Coupled Wireless Power Transmission (자계 결합 무선 전력 전송에서의 결합 계수 추출 방법)

  • Kim, Gun-Young;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper presented the extraction solution for the coupling coefficient at the magnetically coupled wireless power transmission(WPT) system through the analysis of its equivalent circuit considering the loss. The conventional extraction solution using coupled mode theory is generalized employing the extracted solution considering the load resistance. Consequently, the measuring process of extracting coupling coefficient becomes convenient since the even/odd mode analysis is not necessary. Furthermore, the coupling coefficient obtained from the induced extraction method was in excellent agreement with the coupling coefficient obtained using the ratio of magnetic flux passing through the two loops. The extraction of the accurate coupling coefficient at the magnetically coupled WPT is an essential work to analyze and optimize the WPT system.

The characteristic analysis of contact-less Power supply by 3D finite element method

  • Park, Han-Seok;Cho, Yun-Hyun;Jung, Hong-Sub;Woo, Kyung-il;Kim, Kyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.145-151
    • /
    • 2004
  • This paper proposes the calculation method of magnetic coupling coefficient of contact-less power supply by the 3D finite element method with a variation of the secondary core position. The primary, secondary self and leakage inductances and the capacitances of a resonant circuit are calculated by the finite element analysis results. The magnetic coupling coefficients are obtained also. The power factors are obtained by simulation for the magnetic coupling coefficients and compared.

Characteristic Analysis of Contactless Energy Transmission System using 3D Finite Element Method (3차원 유한요소법을 이용한 비접촉 전력 전달 장치 특성 해석)

  • Woo Kyung-Il;Park Han-Seok;Cho Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • This paper proposes the calculation method of magnetic coupling coefficient of the contactless energy transmission system by 3D finite element method with a variation of the secondary core positions. The primary, secondary self and leakage inductances and the capacitances of a resonant circuit are calculated by the finite element analysis results. From these values, the magnetic coupling coefficients are obtained. The secondary voltages and currents according to the secondary core positions are calculated by using the resonant circuit and compared.

A Study on the Coupling Coefficient between ATP Antenna and ATS Antenna in Combined On-Board System (차상통합신호시스템에서 ATP 안테나와 ATS 안테나 사이의 결합계수에 관한 연구)

  • Kim, Doo-Gyum;Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.211-225
    • /
    • 2011
  • Railroad signalling systems are to control intervals and routes of trains. There are ATS(Automatic Train Stop), ATP(Automatic Train Protection), ATO(Automatic Train Operation) and ATC(Automatic Train Control) system. Trains are operated in the section which is met on the signalling system because various signalling systems are used in Korea. On the other words, trains are not operated in the section which is used in the other signalling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system is designed by doubling the ATS, ATP and ATC system. Information signal is received by magnetic sensors in the ATC system and is received by antennas in the ATS and ATP system. Therefore, it is possible to arise transmission problems by magnetic coupling. In this paper, electric model of the ATS and ATP antenna is suggested and interference frequency by the magnetic coupling between the ATS and ATP antenna is estimated numerically. As a results of the magnetic coupling, the value of the magnetic coupling is presented without magnetic induction.

  • PDF

Alternative Expressions for Mutual Inductance and Coupling Coefficient Applied in Wireless Power Transfer

  • Kim, Gunyoung;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 2016
  • Alternative analytic expressions for the mutual inductance ($L_m$) and coupling coefficient (k) between circular loops are presented using more familiar and convenient expressions that represent the property of reciprocity clearly. In particular, the coupling coefficients are expressed in terms of structural dimensions normalized to a geometric mean of radii of two loops. Based on the presented expressions, various aspects of the mutual inductances and coupling coefficients, including the regions of positive, zero, and negative value, are examined with respect to their impacts on the efficiency of wireless power transmission.

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.

Performance Analysis of Magnetic Power Pads for Inductive Power Transfer Systems with Ferrite Structure Variation

  • Kim, Minkook;Byun, Jongeun;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1211-1218
    • /
    • 2017
  • In this paper, performance of rectangular shaped magnetic power pads for inductive power transfer (IPT) system according to ferrite structure is analyzed. In order to evaluate the influences of ferrite structure, six cases of magnetic power pads are proposed. Self-inductance, coupling coefficient, quality factor, and coil to coil efficiency are compared as the displacement increases in the direction of x or y axis. For accurate estimation, finite element method (FEM) simulation is used and loss components of the power pads are numerically calculated and considered. Through the simulation and measured results, effectiveness of protrusive and enveloping ferrite structure is identified.

Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

  • Ren, Siyuan;Xia, Chenyang;Liu, Limin;Wu, Xiaojie;Yu, Qiang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1278-1292
    • /
    • 2018
  • Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

Performance Analysis of Contactless Electrical Power Transfer for Maglev

  • Hasanzadeh, S.;Vaez-Zadeh, S.
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Contactless electrical power transfer through an air gap is a revived technology for supplying energy to many movable applications including Maglev. In this paper, magnetic equivalent circuits and analytical models of contactless electrical power transfer systems are developed and evaluated through experiment. Overall coupling coefficient and overall efficiency are introduced as means for evaluating the systems' performance. Compensating capacitors in primary and secondary sides of the systems improve the overall coupling coefficient and overall efficiency. Using the analytical models, the effects of different parameters and variables such as air gap and load current are analyzed to give a high coupling coefficient and an improved efficiency of power transfer for different compensation structures.