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I. INTRODUCTION 

We live in a world of wireless communication, where huge 

amounts of information are transferred between mobile termi-

nals. With the growing demand for wireless transfer of electric 

power, wireless power transmission (WPT) technology has be-

come increasingly important. In 2007, a magnetically coupled 

WPT was first investigated by Soljacic and his research group at 

Massachusetts Institute of Technology [1]. They successfully lit 

a 60-W bulb at a distance of 7 feet—more than 2 m using 

helical coils of high Q-factor (= ω0L/R). Since then, numerous 

papers have investigated theoretical [2, 3] and practical [4, 5] 

evolutions of WPT systems. The transfer efficiency of WPT 

systems has been well known to depend on the figure of merit, 

defined as the product of the Q-factor (the geometric mean of 

Q1 and Q2) and the coupling coefficient (k), and the load 

resistance. The Q-factors of the coils are determined by the 

dimensions and structures of two resonators. Therefore, the 

coupling coefficient (k) remains to be the most important para-

meter to be determined carefully and accurately. 

The mutual inductance (Lm), expressed as the product of the 

coupling coefficient (k) and self-inductance (L) (actually, the 

geometric mean of L1 and L2) have been usually calculated 

based on the Neumann integral, which can be expressed as an 

integral of the Bessel function or complete elliptic integrals [6–

9], given by 
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R1 and R2 are radii of two loops. d is the distance between 

two loops. The calculation of the mutual inductance between 
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inclined circular coils is also provided in [6, 9]. A method of 

extracting the coupling coefficients (or mutual inductance) was 

suggested in [10]. These expressions have been found to agree 

well with the results extracted with [10]. 

In this paper, alternative analytic expressions for the mutual 

inductance and the coupling coefficient are presented. The new 

expressions consist of geometric parameters of the loops. Spe-

cifically, the coupling coefficient in this work is more explicitly 

expressed as a function of structure dimensions normalized to 

the radius of a transmitting loop, which is indeed the nature of 

the coupling coefficient. Based on the presented expressions, 

various aspects of the coupling coefficients, including the re-

gions of positive k, zero k, and negative k, are examined with 

their impacts on WPT transfer efficiency. Comparisons with 

other expressions are also performed. 

II. CALCULATION OF MUTUAL INDUCTANCE AND 

COUPLING COEFFICIENT FOR CIRCULAR LOOPS 

Fig. 1(a) and (b) show a WPT system consisting of two re-

sonant loops magnetically coupled with each other and its 

equivalent circuit. When each loop is resonant at a resonant 

angular frequency (ω0), the current on each loop can be easily 

obtained. Details can be found in [10]. One compact but 

meaningful expression for the power transfer efficiency was 

obtained as 
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where Fm and b are the figure of merit of the WPT system and a  

load deviation factor, defined by 1 2mF k QQ  and b =RL/  

RL,opt, respectively. When b = 1 in (4) (RL = RL,opt = 
2

2 1 mR F )  

[10], maximum efficiency is achieved. When b > 1, the WPT 

system is in the under-coupled region. When b < 1, the WPT 

system is in the over-coupled region. It is also notable that ηL(b) 

= ηL(1/b) as shown in (4). 

In Fig. 2, the magnetic flux 21  crossing the opened se-

condary loop (I2 = 0) due to the current I1 on the primary loop 

is readily obtained by converting the surface integral to a line 

integral, and is given by [7] 
 

 
,  

 

 

(5)
 

where B  is the magnetic flux density and A  is the mag-

netic vector potential, 2d S  is the differential surface vector 

 

(a) 
 

 

(b) 

Fig. 1. Magnetically coupled wireless power transmission between two 

resonant loops. (a) Geometry, (b) equivalent circuit. 

 

 
Fig. 2. Two circular loops with radii of loops (r1 and r2) and distances (c, 

d) for derivation of mutual inductance (Lm) and coupling 

coefficient (k). 
 

 

on S2, 2dl  is the differential line vector on the secondary loop, 

and the other symbols are similarly defined. The mutual induc-

tance (Lm) is defined by 
 

 .  
(6)

 

This is the well-known Neumann integral for the mutual 

inductance. The self-inductance of the primary loop (L1) is 

given by 
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where l1' is the closed circle with radius r1' (slightly smaller than 

r1) and the self-inductance of the secondary loop (L2) is similarly 

defined [7]. The theoretical coupling coefficient between the 

two loops is then given by 
 

 
. 

 

 

 

(8)

 

We attempt to obtain a more tractable expression in terms of 

r1, r2, d, and c. The distance between the source on the primary 

loop and field on the secondary loop is given by 
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The differential line element 1dl  is given by 
 

 1 1 1 1sin cosx ydl r a a    ,         (10) 
 

with 2dl  similarly expressed. The dot product of the 1dl  and 

2dl  is expressed as 
 

 2
1 2 2 1cosdl dl r     ,          (11) 

 

where r is the geometric mean of r1 and r2 ( 1 2rr ). Lm and the L1 

can be expressed as 
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and 
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and L2 can be expressed similarly. If two loops are coaxially 

aligned (c = 0), Lm is simplified to 
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This expression is quite exact as others since it started from 

the Neumann integral. 

For the very special case in which d is very large (d ≫ r1, r2), 

the closed-form formulas for the mutual inductance of a coaxial 

case were given by [2, 7] 
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and 
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Under the assumption that r1' ≈ r1 and r2' ≈ r2 (filamentary 

loops) and r1'/r1 = r2'/r2, coupling coefficient (8) can be finally 

expressed as 
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where r is the geometric mean of r1 and r2 ( 1 2rr ). (17) has been 

found to be exactly the same as the coupling coefficients in [8, 9] 

but can serve as a convenient alternative expression written in 

terms of structural dimensions normalized to the radius of the 

transmitting loop r1 (r2/r1, d/r, and c/r). This indicates that if the 

ratios r2/r1, d/r, and c/r remain to be the same, the coupling 

coefficients are the same irrespective of the real sizes of r2, d, and 

c. Of course, this holds true when r2, d, and c are very small 

compared with the wavelength, which is usually very large at 

WPT frequencies. For example, at 6.78 MHz, the wavelength is 

approximately 44 m. 

III. DISCUSSION OF MUTUAL INDUCTANCE AND 

COUPLING COEFFICIENT 

We compared the normalized mutual inductance (Lm/r) given 

by (14) with (15) and (16) for the coaxial cases of r2/r1 = 1 in 

Fig. 3(a) and r2/r1 = 0.5 in Fig. 3(b), respectively. The ex-

pressions in [8] and [9] were also included for comparisons. The 

results based on (14) (or (12)), [8] and [9] are shown to be in 

excellent agreement (and exact). The results based on (15) and 

(16) show large discrepancies when d/r is small. Thus, (15) and  
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(a)  

 

 
(b)  

Fig. 3. Normalized mutual inductances (Lm/r) as a function of d/r 

(rring1/r1 = rring2/r2 = 0.02 assumed). (a) r2/r1 = 1, (b) r2/r1 = 0.5. 

 

(16) are not recommended for near-field WPT problems. 

Fig. 4(a) and (b) show the normalized mutual inductances 

(Lm/r) between two circular loops as a function of c/r for fixed 

d/r = 0.1, 0.5, and 1. The cases of r2/r1 = 1 and 0.5 are shown in 

Fig. 4(a) and (b), respectively. As c/r increases, the mutual 

inductances are all shown to converge to zero as expected. It is 

also observed that when c/r is about 2, negative mutual induc-

tance becomes more pronounced as d/r decreases. The negative 

mutual inductance simply means that the net magnetic flux in 

loop 2 is crossing downward. The peak when c/r is about 0.75 

for the case of r2/r1 = 0.5 in Fig. 4(b) is due to the fact that the 

magnetic flux from loop 1 is the strongest near the loop itself 

not at the center. The sign of the mutual inductance is not 

important for the two-loop WPT system, because even though 

the direction of the current on loop 2 may change, the efficiency 

remains the same. However, it does matter for the multiple-

input and multiple-output (MIMO) systems. 

Fig. 5 shows k (17) as a function of r2/r1 and d/r with r2/r1 ≤ 1 

assuming c = 0. Again, r is the geometric mean of r1 and r2. 

Based on the property due to reciprocity theorem, Fig. 5 covers  

 
(a) 

 

 
(b) 

Fig. 4. Normalized mutual inductances (Lm/r) as a function of c/r1 

(rring1/r1 = rring2/r2 = 0.02). (a) r2/r1 = 1, (b) r2/r1 = 0.5. 

 

 
Fig. 5. Coupling coefficients (k) as a function of r2/r1 and d/r (rring1/r1 = 

rring2/r2 = 0.02, c = 0). 

 

all possible combinations of r1, r2, and d if a rule is made that r1 

is the larger of r1 and r2. Eq. (17) holds true as long as r1, r2, and 

d are much smaller than the wavelength. The coupling coeffi-
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cients are shown to monotonically decrease as r2/r1 decreases and 

d/r increases. 

Fig. 6(a) and (b) show the coupling coefficients (17) for the 

cases of r2/r1 = 1 and 0.5, respectively, as a function of d/r and c/r. 

As explained in Fig. 5(a) and (b), the negative coupling coeffi-

cients are shown to be most pronounced when d/r is very small 

and c/r is about 2. For the case of r2/r1 = 0.5 shown in Fig. 6(b), 

the maximum coupling coefficient occurs when d/r approaches 

zero and c/r is about 0.5. 

We examine the coupling coefficients and the transfer effi-

ciencies of the WPT systems consisting of two resonant loops as 

examples. Three kinds of loop structures are employed. The radii 

of the loops are 5 cm, 10 cm, and 20 cm, respectively. In Table 1, 

the values of R, L, C, and Q-factor are summarized for the three 

loops. Each loop is made of copper with σ = 5.8 × 107 S/m. 

The chip capacitors are loaded on the loops for a resonance at 

6.78 MHz. The Q-factors of the loops have been calculated to 

be 334.2 (r = 5 cm), 668.3 (r = 10 cm), and 1,331.9 (r = 20 cm). 

 

 
(a) 

 
(b) 

Fig. 6. Coupling coefficients (k) as a function of d/r and c/r (rring1/r1 = 

rring2/r2 = 0.02). (a) r2/r1 = 1, (b) r2/r1 = 0.5. 

 
Fig. 7. Coupling coefficients (k) and transfer efficiencies (ηL) as a func-

tion of d/r for different r2/r1 (r1 = 10 cm, rring1/r1 = rring2/r2 = 0.02, 

c/r = 0). 

 

Table 1. Circuit element values of three loops at 6.78 MHz 

r, rring (cm) R (Ω) L (μH) C (nF) Q-factor

5, 0.1 0.034 0.267 2.068 310.6

10, 0.2 0.034 0.533 1.034 621.1 

20, 0.4 0.034 1.066 0.517 1,237.8 

 

Fig. 7 shows the coupling coefficients and transfer efficiencies 

as a function of d/r for the cases of r2/r1 = 0.5, 1, and 2. The 

radius of the primary loop (r1) is fixed at 10 cm. The coupling 

coefficients for the case of r2/r1 = 1 are shown to be larger than 

those of the other cases. The higher efficiency for the case of 

r2/r1 = 2 compared to the case of r2/r1 = 0.5 is due to the larger 

Q factor, because the coupling coefficients remain the same. 

Fig. 8(a) and (b) show the coupling coefficients and transfer 

efficiencies as a function of c/r with different d/r’s of 0.1 and 1 

for the cases of r2/r1 = 1 and 0.5. For the case of r2/r1 = 1 and d/r 

= 0.1, the coupling coefficient changes sign from positive to 

negative when c/r is about 1.5. Near this position, the 80% 

efficiency is shown to drop abruptly to zero but then to quickly 

recover to a value above 70%. A similar phenomenon is ob-

served for the case of r2/r1 = 1 and d/r = 1 but the efficiency 

recovers to about 50%. For the case of r2/r1 = 0.5, similar effects 

are demonstrated, but the levels of the results are smaller than 

those for the case of r2/r1 = 1. 

IV. CONCLUSION 

This paper presents alternative analytic expressions for the 

mutual inductance and coupling coefficient between circular 

loops. The mutual inductance and coupling coefficient have 

been expressed in more familiar forms and explicitly written in 

terms of structure ratios and the placement of loops. Various 

aspects of the coupling coefficients, including the regions of  
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(a) 

 

 
(b) 

Fig. 8. Coupling coefficients (k) and transfer efficiencies (ηL) as a 

function of c/r1 for different d/r1 (r1 = 10 cm, rring1/r1 = rring2/r2 = 

0.02). (a) r2/r1 = 1, (b) r2/r1 = 0.5. 

 

positive k, zero k, and negative k, have been examined respect to 

with their impacts on WPT transfer efficiency. 

 

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-

ment (MSIP) (No. NRF-2013-R1A2A2A01015202). 

 

 

 

 

 

 

REFERENCES 

[1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fi-

sher, and M. Soljacic, "Wireless power transfer via strongly 

coupled magnetic resonance," Science, vol. 317, no. 5834, pp. 

83–86, 2007. 

[2] S. Raju, R. Wu, M. Chan, and C. P. Yue, "Modeling of 

mutual coupling between planar inductors in wireless power 

applications," IEEE Transactions on Power Electronics, vol. 

29, no. 1, pp. 481–490, 2014. 

[3] H. D. Lang, A. Ludwig, and C. D. Sarris, "Convex op-

timization of wireless power transfer systems with multiple 

transmitters," IEEE Transactions on Antennas and Propa-

gation, vol. 62, no. 9, pp. 4623–4636, 2014. 

[4] R. Zhang, R. G. Maunder, and L. Hanzo, "Wireless infor-

mation and power transfer: from scientific hypothesis to 

engineering practice," IEEE Communications Magazine, vol. 

53, no. 8, pp. 99–105, 2015. 

[5] Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, 

"Employing load coils for multiple loads of resonant 

wireless power transfer," IEEE Transactions on Power Elec-

tronics, vol. 30, no. 11, pp. 6174–6181, 2015. 

[6] F. W. Grover, Inductance Calculations. New York: Dover, 

1964. 

[7] C. R. Paul, Inductance: Loop and Partial. Hoboken, NJ: 

Wiley, 2010. 

[8] J. T. Conway, "Inductance calculations for noncoaxial coils 

using Bessel functions," IEEE Transactions on Magnetics, vol. 

43, no. 3, pp. 1023–1034, 2007. 

[9] S. I. Babic and C. Akyel, "Calculating mutual inductance 

between circular coils with inclined axes in air," IEEE Tr-

ansactions on Magnetics, vol. 44, no. 7, pp. 1743–1750, 2008. 

[10] C. Kim and B. Lee, "Analysis of magnetic coupled wireless 

power transmissions considering radiation loss," Journal of 

the Korea Electromagnetic Engineering Society, vol. 11, no. 3, 

pp. 156–160, 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 



JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 16, NO. 2, APR. 2016 

118 
   

  

Gunyoung Kim  
received a B.S. in radio communication engineering 

and an M.S. in electronics and radio engineering 

from Kyung Hee University, Yongin, Korea, in 2010 

and 2012, respectively, where he is currently working 

toward his Ph.D. His fields of research include 

microwave antennas, passive devices, wireless power 

transmission, and metamaterials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bomson Lee  
received a B.S. in electrical engineering from Seoul 

National University, Seoul, Korea, in 1982, and an 

M.S. and Ph.D. in electrical engineering from the 

University of Nebraska, Lincoln, in 1991 and 1995, 

respectively. From 1982 to 1988, he was with Hyun-

dai Engineering Company Ltd., Seoul, Korea. In 

1995, he joined the faculty of Kyung Hee University, 

where he is currently a professor in the Department 

of Electronics and Radio Engineering. He was the editor-in-chief of the 

Journal of the Korean Institute of Electromagnetic Engineering and Scien-

ce in 2010. He is the vice chairman of the Korea Institute of Electromag-

netic Engineering & Science. His fields of research include microwave 

antennas, RF identification tags, microwave passive devices, wireless power 

transmission, and metamaterials. 


