• Title/Summary/Keyword: Magnetic core

Search Result 963, Processing Time 0.033 seconds

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core

  • Choi, Won-Youl;Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • We present a micro fluxgate magnetic sensor having solenoid coils and racetrack shaped magnetic core, which was designed to decrease the .operating power and magnetic flux leakage. Electroplated copper coils of $6\;{\mu}m$ thickness and the core of $3\;{\mu}m$ thickness were separated by benzocyclobutane (BCB) having a high insulation and good planarization characters. Permalloy $(Ni_{0.8}Fe_{0.2})$ as a magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The core had the high DC effective permeability of $\~1,300$ and coercive field of $\~0.1$ Oe. The fabricated fluxgate sensor had the very small actual size of $3.0\times1.7\;mm^2$. The fluxgate sensor with a racetrack shaped core had the high sensitivity .of $\~350$ V/T at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.

Magnetic Field Properties About Core Change (코어 변화에 대한 자계 특성)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • In this paper, it tried to develop the core sensor for detection of micro magnetic field in electric wires. The sensor is non contact type and is consisted of ferrite core for low price. To investigate their properties for variations of current, it changed the number of winding and the length of sample core, it examined, to check the live wire situation in built-in wires, electrical characteristics due to difference between electric wires and core sensor. As the results, it verified live wire situation at the number of winding(5,000) and within length of 6[cm]. Also, it obtained magnetic field magnitude decreased inverse proportion ratio to a square about difference between electric wires and core sensor.

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

Characteristic Analysis using Equivalent Magnetic Circuit Network Method for Permanent Magnet Excited Transverse Flux Linear Motor with Spiral Core in a Mover (스파이럴 이동자 코어를 가지는 영구자석여자 횡자속 선형전동기의 등가자기회로망법을 이용한 특성해석)

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun;Hoang, Trung Kien;Kim, Kwang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.794_795
    • /
    • 2009
  • This paper presents an analysis method for a permanent magnet excited Transverse Flux Linear Motor (TFLM) with spiral core in a mover. The spiral core is used as mover core in order to make 3-dimensional magnetic flux path at the TFLM which has 3-dimensional magnetic flux flow. Magnetic field is analyzed by three-dimensional Equivalent Magnetic Circuit Network (EMCN) method. And an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. The computed thrust forces is compared to the measured results to show the effect of presented analysis method.

  • PDF

Properties of compacted iron powder core coated with organic materials (코팅제 및 코팅 함량에 따른 철 분말 성형체의 특성)

  • Min, Bok-Ki;Kim, In-Sung;Kim, Jong-Ryung;Choi, Sung-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.264-267
    • /
    • 2005
  • Soft magnetic iron powders have been coated with polyester or phenol resin. And the coated powder (soft magnetic composite) have been pressed into ring type core over the pressure of 870 MPa. Green density, magnetic flux density, permeability, core loss of the samples were measured to look at the effect of the coating materials and the amount of them. Green density is increased with the amount of coating materials and shows the maximum value, 6.5 $g/cm^3$ at 5 w/o, but decreased over it. And lowest value of the core loss is showed for the 5 w/o coated samples.

  • PDF

Development of Transformation-Core for Magnetic Field in Switchgear

  • Gwan-hyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.316-321
    • /
    • 2023
  • In this study, we developed a conversion core that produces power by utilizing the unused magnetic field in a switchboard. The conversion core makes it possible to utilize power that is normally wasted. The conversion core is composed of a core, filter, and battery. A prototype was installed in a switchboard to conduct tests on the output, battery storage, and output boosting of multiple batteries. Energy was harvested from the magnetic field generated by a busbar of the switchboard, and the power conversion ratio of the core yielded 1.08-1.01 mW per 1 A of bus current. Supplying this technology to the market after further R&D and commercialization is expected to greatly assist in the dissemination of energy harvesting, which has not yet spread widely to the general public.

Analysis on Current Limiting Characteristics According to the Influence of the Magnetic Flux for SFCL with Two Magnetic Paths

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1909-1913
    • /
    • 2014
  • In this study, a superconducting fault current limiter (SFCL) having two magnetic paths was proposed, and its current limiting characteristics were analyzed. For the SFCL to effectively perform the current limiting operation, it must be designed considering the magnetic saturation of the E-I core. Further, the influence of the magnetic flux on its peak current limiting characteristics was investigated. In addition, the magnetic flux curves of the SFCL obtained from the fault current limiting experiments were analyzed, and the subtractive polarity winding case was observed to not only further reduce the saturation potential of the core but also perform the peak current limiting functions well when compared with the additive polarity winding case.

Annealing Effect on the Characteristics of Thin Film Inductors with Inner Coil Type (내부 코일형 박막 인덕터의 특성에 미치는 열처리 효과)

  • Min, Bok-Gi;Kim, Hyeon-Sik;Song, Jae-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.333-338
    • /
    • 1999
  • Thin film inductors of $10 mm \times 10 mm$ with inner coil type of 14 turns were fabricated by sputtering, photo-masking, and etching processes. Their characteristics of impedances and annealing after were investigated. The properties of impedances of the thin film magnetic core inductors with inner coil type were improved by magnetic field annealing due to the removal of residual stress and the improvement magnetic properties of magnetic films. But the characteristics of frequency of the thin film magnetic core inductors were not improved by magnetic field annealing due to properties of the spiral pattern and inner coil type. The thin film magnetic core inductor annealed by uniaxal field annealing method showed an inductance of 1000 nH and resistance of$ 6 \Omega$ of 1 at 2 MHz.

  • PDF

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.