• Title/Summary/Keyword: Magnetic anisotropy energy

Search Result 94, Processing Time 0.023 seconds

Relationship between Sputtering Pressure of Underlayer and M-H Behavior in Co/Pd and Co/Pt Perpendicular Magnetic Recording Media (Co/Pd 및 Co/Pt 수직자가기기록매체에 있어서 바닥층의 스퍼터링 압력과 M-H 거동의 관계)

  • 오훈상;이병일;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 1996
  • Co/Pd and Co/Pt multilayered thin films for perpendicular magnetic recording media were fabricated by sput¬tering method and the effects of the sputtering pressure during the formation of Pd or Pt underlayers on the magnetization behavior and coercivity of the multilayers were investigated. It was found that the coercivity of Co/Pd multilayers was strongly dependent on the sputtering pressure of underlayer and could be enhanced to a large extent merely by increasing the sputtering pressure of underlayer, while in case of Co/Pt films, the degree of coercivity enhancement by controlling the sputtering pressure of underlayer was almost negligible. Coercivity variation of Co/Pd and Co/Pt multilayers with the underlayer material and deposition pressure of underlayer could be well explained in terms of the interface roughness of multilayer films induced by underlayer topology, which could also be correlated to the change of perpendicular anisotropy energy and magnetic reversal feature with the sputtering pressure of underlayer. Kerr rotation angle was hardly affected by the preparation conditions of underlayers.

  • PDF

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

THE SPIN REORIENTATION AND THE MAGNETI ANISOTROPY IN $R_{2}Fe_{17-x}M_{x}C_{y}$ (R=Er, Tm, M=Al, Ga)

  • Ohno, K.;Urakabe, T.;Agata, M.;Saito, T.;Shinagawa, K.;Tsushima, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.437-441
    • /
    • 1995
  • In order to consider the change of the magnetic anisotropy energy by the Al or Ga substitution for Fe, spin reorientation temperature $T_{SR}$ and Curie temperature $T_{c}$ in $R_{2}Fe_{17-x}M_{x}$ (R=Er, Tm, M=Al, Ga) have been studied both experimentally and theoretically. As a result, $T_{SR}$ and $T_{c}$ for $R_{2}Fe_{17-x}M_{x}$ shift toward higher temperature side with x ($0{\leq}x{\leq}2.0$). The ${\Delta}T_{c}$ the difference of the $T_{c}'s$ between $Er_{2}Fe_{17-x}Al_{x}$ and $Tm_{2}Fe_{17-x}Al_{x}$, is always about 10 K independent of Al-content. But in the case of Ga substitution, the ${\Delta}T_{c}$ increases with Ga-content ; especially, the ${\Delta}T_{c}$ for x=2.0 is 43 K. This value of the ${\Delta}T_{c}$ is not explained by only the difference of the de Gennes fator G between $Er^{3+}$ and $Tm^{3+}$, but it is thought that the values of $J_{ErFe}$ and $J_{TmFe}$ themselves are not equal. ($J_{AB}$ : the exchange interaction between A and B.)

  • PDF

Thermal Stability and the Effect of Substrate Temperature on the Structural and Magnetic Properties of Pd/Co Multilayer Films (Pd/Co 다층박막의 구조 및 자기적 특성에 미치는 기판온도 및 열적안정성에 관한 연구)

  • 허용철;김상록;이성래;김창수
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.298-304
    • /
    • 1993
  • The effects of the substrate temperature and the Pd underlayer on the structure and the magnetic properties of Pd/Co multilayer films prepared by the thermal evaporation were studied. As the substrate temperature increases up to $150^{\circ}C$, the crystallinity of sublayers, (111) texture and the interface sharpness of Pd/Co multilayers were improved due to the enhanced mobility of adatoms. As results of that, the perpendicular and surface anisotropy energies were increased but the coercivity was decreased because the pinning sites of domain wall decreased due to the grain growth. The grain size of the multilayers increased with Pd underlyer thickness. Thermal degradation was enhanced at above $200^{\circ}C$ due to interdiffusion at the Pd/Co interface. The intensity of the main diffraction peak rapidly decayed in the initial stage of aging and then decreased slowly. The rapid change of the intensity in the initial stage was speculated to be due to the structural relaxation phenomena and the later stage change was due to the interdiffusion. The activation energy for the interdiffusion in Pd4/Co1 multilayers was 14.9 KCal/mole.K.

  • PDF

Synthesis, Structure and Magnetic Properties of Mn12 Single Molecule Magnet Containing 4-(Methylthio)benzoate as Peripheral Ligands

  • Lim, Jin-Mook;Do, Young-Kyu;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1065-1070
    • /
    • 2005
  • $[Mn_{12}O_{12}(O_2CPh-4-SMe)_{16}(H_2O)_4]{\cdot}7CH_2Cl_2$ (1), a new single-molecule magnet complex has been successfully synthesized by substitution of acetate ligand of Mn12ac with 4-(methylthio)benzoic acid. Complex 1 crystallizes into triclinic P$\overline{1}$ with a = 18.321(3) $\AA$, b = 19.011(3) $\AA$, c = 27.230(4) $\AA$, $\alpha$ = 86.973(3)$^{\circ}$, $\beta$ = 76.919(3)$^{\circ}$, $\gamma$ = 87.613(3)$^{\circ}$, and Z = 2. In complex 1, one Mn(III) ion has an abnormal Jahn-Teller elongation axis oriented at an oxide ion. Complex 1 has two out-of-phase ac susceptibility peaks in the 2-4 K and 4-7 K regions. Effective anisotropy energy barrier and pre-exponential factor are $U_{eff}$ = 45.95 K, 1/$\tau$0 = 8.6 ${\times}\;10^9s^{-1}\;for\;{\chi}_M$'' peaks in the lower temperature region and $U_{eff}$ = 59.45 K, 1/$\tau_0$ = 2.2 ${\times}\;10^8\;s^{-1}$ for $\chi_M$'' peaks in the higher temperature region. The parameters of S = 10, g = 1.87, D = -0.40 $cm^{-1}$, and E = 0.00034 $cm^{-1}$ were obtained from the M/N${\mu}_B$ vs. H/T plot of complex 1.

Effects of Sputtering Ar Pressure on Magnetic and Magneto-optical Propwrties in Compositionally Modulated Co/Pd Supwrlattice Thin Films (조성변조 Co/Pd 초격자 박막의 Ar가스 압력변화에 따른 자기 및 자기광학적 특성)

  • 김진홍;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.119-124
    • /
    • 1992
  • We have investigated the effects of sputtering Ar gas pressure on magnetic and magneto-optical properties in compositionally modulated Co/Pd superlattice thin films. The samples were prepared by dc magnetron sputtering from 2-in.-diam Co and Pd targets by alternately exposing the substrates to targets. Sputtering Ar gas pressure was varied from 2 to 30 mTorr. All samples had same bilayer thicknesses composed of 2-$\AA$-thick Co and 9-$\AA$-thick Pd sublayers. It was observed that the colum-nar structure was more distinctively developed with increasing Ar gas pressure. We observed that the intrinsic uniaxial anisotropy energy, magnetization and polar Kerr rotation were decreased with increasing Ar gas pressures. Large coercivity and perfect squareness were attained by the deposition at the high Ar gas pressure. We believe that the results are mainly ascribed the variation of micro-structure with sputtering Ar gas pressure.

  • PDF

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.

Magnetic Properties of Monolayer-thiciness InP(001)(2×4) Reconstruction Surface (InP(001)(2×4)재구성된 표면 위에 원자층 단위로 증착된 Co 박막의 자성 특성)

  • Park, Yong-Sung;Jeong, Jong-Ryul;Lee, Jeong-Won;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.89-94
    • /
    • 2004
  • We have investigated magnetic properties of monolayer (ML)-thickness Co film deposited on InP(2${\times}$4) reconstruction surface using in situ Surface Magneto-Optical Kerr Effects (SMOKE) measurement system. InP(2${\times}$4) reconstruction surface, obtained by repeated sputtering and annealing, was confirmed by reflection hish energy electron diffraction (RHEED) and scanning tunneling microscope (STM) measurements. From both longitudinal and polar SMOKE measurements, we have observed three distinguishable regions showing different magnetic properties depending on the Co thickness. In the Co film thickness smaller than 7 $m\ell$, no SMOKE signal was detected. In the following thickness between 8 $m\ell$ and 15 $m\ell$, both longitudinal and polar Kerr hysteresis loops were observed, which implies a metastable phase coexisted of in-plane and perpendicular anisotropies. In the film thickness larger than 16 $m\ell$, only longitudinal MOKE signal without polar signal was detected, which implies existence of in-plane anisotropy in this thickness region.

Magnetization Switching of MTJs with CoFeSiB/Ru/CoFeSiB Free Layers (CoFeSiB/Ru/CoFeSiB 자유층을 갖는 자기터널 접합의 스위칭 자기장)

  • Lee, S.Y.;Lee, S.W.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.124-127
    • /
    • 2007
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous CoFeSiB layers, were investigated. The CoFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with an emphasis given on understanding the effect of the amorphous free layer on the switching characteristics of the MTJs. CoFeSiB has a lower saturation magnetization ($M_s\;:\;560\;emu/cm^3$) and a higher anisotropy constant ($K_u\;:\;2800\;erg/cm^3$) than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003\;erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the Si/$SiO_2$/Ta 45/Ru 9.5/IrMn 10/CoFe 7/$AlO_x$/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs structure, it was found that the size dependence of the switching field originated in the lower $J_{ex}$ using the experimental and simulation results. The CoFeSiB synthetic antiferromagnet structures were proved to be beneficial for the switching characteristics such as reducing the coercivity ($H_c$) and increasing the sensitivity in micrometer size, even in submicrometer sized elements.