MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Published : 1995.10.01

Abstract

High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

Keywords

References

  1. J. Magn. Magn. Mat. v.7 K.J.Strnat
  2. J. Appl. Phys. v.52 R.K.Mishra;G.Thomas;T.Yoneyama;A.Tukono;T.Ojima
  3. J. Appl. Phys. v.53 G.C.Hadjipanayis;E.J.Yadlowsky;S.H.Wallins
  4. Ferromagnetic Materials v.5 K.H.J.Buschow;K.H.J.Buschow(ed.);E.P.Wohlfarth(ed.)
  5. J. Appl. Phys. v.55 J.J.Croat;J.E.Herbst;R.W.Lee;F.E.Pinkerton
  6. J. Appl. Phys. v.55 M.Sagawa;S.Fujimura;N.Togawa;H.Yamamoto;G.Matsuura
  7. J. Magn. Magn. Mat. v.87 J.D.Coey;H.Sun
  8. Appl. Phys. Letters v.57 K.Schnizke;L.Schultz;J.Wecker;M.Katter
  9. 13th International Symposium on Rare Earth Magnets and their Applications F.M.Ahmed;D.S.Edgley;I.R.Harris
  10. J. Magn. Magn. Mat. v.123;124 J.Ding;G.Liu;P.G.McCormick;R.Street
  11. IEEE Trans. Mag. v.MAG29 R.Skomski;J.Coey
  12. IEEE Trans. Mag. v.MAG26 Y.Yoshizawa;K.Yamauchi
  13. J. Magn. Magn. Mat. v.74 H.Kronmuller;K.D.Durst;M.Sagawa
  14. J. de Physique v.C8-49 H.Kronmuller;K.D.Durst;S.Hock;G.Martinek
  15. 8th International Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys H.Kronmuller
  16. Phys. Rev. v.B49 T.Schrefl;J.Fidler;H.Kronmuller
  17. J. Magn. Magn. Mat. R.Fischer;T.Schrefl;H.Kronmuller;J.Fidler
  18. 8th International Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys M.Wilcox;J.Williams;M.Leonowicz;A.Manaf;H.Davies
  19. Private communication J.Bauer
  20. J. Magn. Magn. Mat. v.101 A.Manaf;R.A.Buckley;H.A.Davies;M.Leonowicz
  21. IEEE Trans. Mag. v.MAG26 G.Herzer
  22. J. Mag. Mag. Mag. v.112 H.Kronmuller;T.Reininger
  23. phys. stat. sol. (a) v.134 B.Hofmann;T.Reininger;H.Kronmuller