Browse > Article
http://dx.doi.org/10.4283/JKMS.2007.17.3.124

Magnetization Switching of MTJs with CoFeSiB/Ru/CoFeSiB Free Layers  

Lee, S.Y. (Department of Physics, Sookmyung Women's University)
Lee, S.W. (Department of Physics, Sookmyung Women's University)
Rhee, J.R. (Department of Physics, Sookmyung Women's University)
Abstract
Magnetic tunnel junctions (MTJs), which consisted of amorphous CoFeSiB layers, were investigated. The CoFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with an emphasis given on understanding the effect of the amorphous free layer on the switching characteristics of the MTJs. CoFeSiB has a lower saturation magnetization ($M_s\;:\;560\;emu/cm^3$) and a higher anisotropy constant ($K_u\;:\;2800\;erg/cm^3$) than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003\;erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the Si/$SiO_2$/Ta 45/Ru 9.5/IrMn 10/CoFe 7/$AlO_x$/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs structure, it was found that the size dependence of the switching field originated in the lower $J_{ex}$ using the experimental and simulation results. The CoFeSiB synthetic antiferromagnet structures were proved to be beneficial for the switching characteristics such as reducing the coercivity ($H_c$) and increasing the sensitivity in micrometer size, even in submicrometer sized elements.
Keywords
amorphous ferromagnet; CoFeSiB; magnetic random access memory (MRAM); switching field; synthetic antiferromagnet (SAF); tunneling magnetoresistance (TMR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and Gang Xiao, J. Appl. Phys., 81, 3741 (1997)   DOI   ScienceOn
2 T. Nozaki, Y. Jiang, H. Sukegawa, N. Tezuka, A. Hirohata, K. Inomata, and S. Sugimoto, J. Appl. Phys., 95, 3745 (2004)   DOI   ScienceOn
3 E. C. Stoner and E. P. Wohlfarth, Philos. Trans. Roy. Soc., Ser., A240, 559 (1948)
4 A. Kaufler, Y. Luo, K. Samwer, G. Gieres, M. Vieth, and J. Wecker, J. Appl. Phys., 91, 1701 (2002)   DOI   ScienceOn
5 M. S. Song, B. S. Chun, Y. K. Kim, I. J. Hwang, and T. W. Kim, J. Appl. Phys., in press
6 F. E. Luborsky, Amorphous metallic alloys, London, U.K.: Butterworths (1983)
7 D. Wang, C. Nordman, J. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn., 40, 2269 (2004)   DOI   ScienceOn
8 H. A. M. van den Berg, W. Clemens, G. Gieres, G. Rupp, M. Vieth, J. Wecker, and S. Zoll, J. Magn. Magn. Mater, 165, 524 (1997)   DOI
9 N. Wiese, T. Dimopoulos, M. Ruhrig, J. Wecker, H. Bruckl, and G. Reiss, Appl. Phys. Lett, 85, 2020 (2004)   DOI   ScienceOn