THE SPIN REORIENTATION AND THE MAGNETIC ANISOTROPY IN $R_2Fe_{17} - xM_xC_y$ (R=Er, Tm, M=Al, Ga)

K.Ohno, T.Urakabe, M.Agata, T.Saito, K.Shinagawa, and T.Tsushima Dept. of Physics, Faculty of Science, Toho Univ., Funabashi City, Chiba, 274 Japan

ABSTRACT- In order to consider the change of the magnetic anisotropy energy by the Al or Ga substitution for Fe, spin reorientation temperature T_{SR} and Curie temperature T_c in $R_2Fe_{17-x}M_x$ (R=Er, Tm, M=Al, Ga) have been studied both experimentally and theoretically. As a result, T_{SR} and T_c for $R_2Fe_{17-x}M_x$ shift toward higher temperature side with x ($0 \le x \le 2.0$). The ΔT_c , the difference of the T_c 's between $Er_2Fe_{17-x}Al_x$ and $Tm_2Fe_{17-x}Al_x$, is always about 10 K independent of Al-content. But in the case of Ga substitution, the ΔT_c increases with Ga-content; especially, the ΔT_c for x=2.0 is 43 K. This value of the ΔT_c is not explained by only the difference of the de Gennes fator G between Er^{3+} and Tm^{3+} , but it is thought that the values of J_{ErFe} and J_{TmFe} themselves are not equal. (J_{AB} : the exchange interaction between A and B.)

I .INTRODUCTION

The magnetic properties of the $R_2Fe_{17}N_x$ (R=rarerarth) have been extensively studied. $Sm_2Fe_{17}N_x$ has a small coercive force despite of a large anisotropy energy, and $Sm_2Fe_{17}N_x$ has not yet become a practical permanent magnet material.

The effect of the substitution for Fe by various elements has been studed in order to get the high Curie temperature T_c and the large anisotropy energy. Previously, Narashimhan et al. [1] reported in 1974 that in $Tm_2Fe_{17-x}Al_x$ the spin reorientation temperature T_{SR} and T_c shift toward higher temperature sides with x, and D. McNeely et al. [2] reported in 1976 the rise of T_c and the expansion of the unit cell volume in $Sm_2Fe_{17-x}Al_x$. Recently, Kato et al. [3] have measured the magnetization of $Sm_2Fe_{17-x}Al_x$ in a high field, and have reported that the spin reorientation (SR) occurs even in this compound with a canting angle of the spin axis. But according to their result, the easy direction of $Sm_2Fe_{17-x}Al_x$ does not orient to the c-axis at low temperatures $(T \leq T_{SR})$ as far as $x \leq 2$.

We have already measured the Al-content dependence of the T_{SR} in $R_2 Fe_{17-x} Al_x C_2$, and have reported that T_{SR} becomes higher with the Al-

content [4]. By using the crystalline field model and the experimental results, it is seen that 2nd order crystalline field parameter $\mid A_2^0 \mid$ increases and the molecular field $\mid \mathbf{H}_m(0) \mid$ for T=0 K (R-Fe exchange interaction) decreases. The decrease of $\mid \mathbf{H}_m(0) \mid$ is proportional to (17-x)/17 due to the substitution for Fe. It was also proved that the Al substitution increases the c-axis anisotropy energy of R ions having positive α_J . (α_J is 2nd order Stevens factor.)

Bao-gen Shen et al. [5] have measured the magnetic properties of $\operatorname{Sm}_2\operatorname{Fe}_{17-x}\operatorname{M'}_x$ (M'=Si, Ga), and have reported that the T_c shifts toward higher temperature side with increasing x, and also the easy direction of $\operatorname{Sm}_2\operatorname{Fe}_{15}\operatorname{Ga}_2$ orients to the c-axis at room temperature. But, this phenomenon is not seen in the substitution for Fe by Al and Si, and the Ga-substitution effect is in the same tendency as the one of the interstitial atoms (N, C) from the view point of enhancing the magnetic anisotropy energy.

Though α_J of ${\rm Er}^{3+}$ is positive, there is not SR in ${\rm Er}_2{\rm Fe}_{17}$. Then, in this paper, it is studied whether ${\rm Er}_2{\rm Fe}_{17-x}{\rm Ga}_x$ ($x=0\sim 2.0$) has SR by the effect of Ga-substitution as mentioned above. And also, the Ga-content-dependence of the T_{SR} is

studied in $Tm_2Fe_{17-x}Ga_x$ ($x=0 \sim 2.0$), and these experimental results are analyzed by means of the crystalline field model [6] and the molecular field expression for T_c [7]. Besides, the Al-content dependence of the T_{SR} in $R_2Fe_{17-x}Al_xC_{0.5}$ is also studied. The effect of the substitution for Fe by Al and Ga is discussed in the view point of the SR.

II.EXPERIMENTALS

All samples were prepared by arc-melting the high purity elements (99.9 % for Er and Tm, 99.99 % for Fe and Al, 99.999 % for Ga, respectively), and they were annealed in vacuum in sealed quartz tubes at 1100 °C for a week. It was confirmed by X-ray diffraction that the samples are of the single phase of the Th₂Ni₁₇-structure.

The magnetization was measured by means of a vibrating-sample magnetometer between 77-400 K, and the magnetization of $\rm Er_2Fe_{16}Ga$ was measured between 4.2-150 K. A weak field of 1 kOe was applied to measure T_{SR} precisely, where T_{SR} and T_c were defined as the inflection points in the temperature-dependence curves of the magnetization.

III.CALCULATION

There are two sites of 2b and 2d for an R ion in the hexagonal Th₂Ni₁₇ (P6₃/mmc)-type, and these two sites belong to the point group D_{3h} . Therefore, one must consider the crystalline field coefficients of A_2^0 , A_4^0 , A_6^0 , and A_6^6 , but in this paper only the A_2^0 and A_4^0 are taken into account. Especially, the A_2^0 is the most dominant parameter in determining the easy direction. As usual, A_2^0 values for both 2b and 2d sites are set equal. (The value of A_2^0 will be discussed in the section 4.)

Then the crystalline electric field Hamiltonian H_{CEF} [6] for the ground J multiplet state is writ-

ten as follows;

$$H_{CEF} = \alpha_J \langle r^2 \rangle A_2^0 O_2^0 \quad , \tag{1}$$

where $\langle r^2 \rangle$ is the average of r^2 over the radial wave function of the 4f electrons. The O_2^0 that operates to the ground multiplet state of an R ion is the Stevens operator.

The total Hamiltonian H_R for an R ion is expressed as follows;

$$H_R = H_{CEF} + 2(g_J - 1)\mu_B \mathbf{J} \cdot \mathbf{H}_m(T) , (2)$$

where $\mathbf{H}_m(T)$ is the molecular field produced by the R-Fe exchange interaction, and it is assumed proportional to the magnetic moment of Fe in $Y_2\text{Fe}_{17}$. (The value of $|\mathbf{H}_m(0)|$ will be discussed in the section 4.)

The partition function Z is derived from Eq.(2), and the free energy of the total system per formula unit is given as follows;

$$F = -2kT \ln Z + (17 - x)K_{Fe}(T)\sin^2\theta , (3)$$

where $K_{Fe}(T)$ is the anisotropy energy per Fe atom, and the experimental value in Y₂Fe₁₇ is taken as $K_{Fe}(T)$ from the ref. [8], and $K_{Fe}(0)$ is taken as -2.5 K. The T_c 's for Y_2 Fe₁₇ and Y_2 Fe_{17-x}Ga_x are different, and the values of $K_{Fe}(T)$ are not the same. But the T_c 's for these compounds are higher than room temperature, and the range of the present T_{SR} is located between 100 K and 250 K. Namely, it is thought that there is not so serious problem if the $K_{Fe}(T)$ values for Y₂Fe₁₇ is used even in the present compounds. With the increase of x, the total anisotropy energy of Fe sublattice is reduced by the ratio of (17-x)/17 on the assumption that $K_{Fe}(T)$ is independent of the Gacontent. The direction of the magnetic moment of Fe at each temperature is obtainted by minimizing Eq.(3) with respect to its angle θ for each temperature.

IV.RESULTS AND DISCUSSION

IV-1. Spin reorientation temperature

A. Al-substitution

The temperature-dependence of the magnetization in $\mathrm{Er_2Fe_{17-x}Al_xC_{0.5}}$ (x=0.5, 1.5, 2.0) and $\mathrm{Tm_2Fe_{17-x}Al_xC_{0.5}}$ (x=0, 0.5, 2.0) are shown in Figs.1 and 2, respectively. It is seen that the magnetization changes abruptly at T_{SR} ; the abrupt changes indicate the transition of the easy direction from the c-axis to the c-plane with rising temperature.

Fig.1. The temperature-dependence of the magnetization in ${\rm Er}_2\,{\rm Fe}_{17-x}\,{\rm Al}_x\,{\rm C}_{0.5}$.

Fig. 2. The temperature-dependence of the magnetization in $Tm_2Fe_{17-x}Al_{0.5}.$

Since we have already measured the temperature-dependence of the magnetization in $R_2Fe_{17-x}Al_xC_2$ (R=Er, Tm), the T_{SR} as a function of the Alcontent x in $R_2Fe_{17-x}Al_xC_y$ is shown in Fig.3. From this figure, the curves (y=0.5, 2.0) of the Aldependence of T_{SR} have almost the same shapes between R=Er and Tm; especially, the curves of

Fig. 3. The observed T_{SR} as a function of Al-content x in $R_2 Fe_{17-x} Al_x$.

y=0.5 for Er and Tm change almost linearly. Then, the T_{SR} 's of R_2 Fe₁₅Al₂C_{0.5} (R=Er, Tm) are higher than the ones of R_2 Fe₁₅Al₂C₂ (R=Er, Tm).

B. Ga-substitution

The temperature-dependence of the magnetization for Er₂Fe₁₆Ga between 4.2 K and 150 K is shown in Fig.4. No SR is observed in Er₂Fe₁₇, but it is clearly seen that the SR occurs in Er₂Fe₁₆Ga.

The T_{SR} as a function of the Ga-content x in $R_2 \operatorname{Fe}_{17-x} \operatorname{Ga}_x$ (R=Er, Tm) is shown in Fig.5. It is seen that T_{SR} shifts toward higher temperature side with increasing x.

Fig. 4. The temperature-dependence of magnetization in Er₂Fe₁₆Ga.

Fig. 5. The observed T_{SR} as a function of the Ga-content x in R_2 Fe_{17-x}Ga $_x$ (R=Er, Tm).

Fig. 6. The observed T_c as a function of the Ga-content x in $R_2Fe_{17-x}Ga_x$ (R=Er, Tm).

N-2. Curie temperature

The variation of T_c with x in $R_2Fe_{17-x}Ga_x$ (R=Er, Tm) is shown in Fig.6, and also the T_c 's in $R_2Fe_{17-x}Al_x$ (R=Er, Tm) were measured. In $R_2Fe_{17-x}Al_x$, it is seen that ΔT_c , the difference of T_c between R=Er and R=Tm, is always constant with about 10 K, but the ΔT_c for $R_2Fe_{17-x}Ga_x$

increases with x; especially, the ΔT_c in the case of x=2.0 is 43 K.

N-3. Molecular field and Curie temperature

The T_c is almost determined by the value of Fe-Fe exchange interaction J_{FeFe} , but T_c 's differ with a kind of R due to the existence of R-Fe exchange interaction J_{RFe} . If J_{RR} is neglected, the expression of T_c for J_{FeFe} , H_m , and G becomes approximately as follows [7];

$$3k_B T_c \approx A + A + \frac{1}{2} \frac{2}{17 - x} \frac{4H_m^2}{Z_{FeFe}J_{FeFe}S_{Fe}^2} G \quad (4)$$

$$H_m \equiv \frac{-Z_{RFe}S_{Fe}}{2} J_{RFe}$$

$$A \equiv Z_{FeFe}S_{Fe}(S_{Fe} + 1)J_{FeFe} \quad ,$$

where Z_{AB} is the number of B atom neighbors of A atom, S_{Fe} is the Fe spin, G is the de Gennes factor, and H_m is the molecular field (J_{RFe}) .

According to Eq.(4), the ΔT_c (the difference between the two T_c 's with different G and H_m values) is expressed as follows;

$$3k_{B}\Delta T_{c} = \frac{1}{2} \frac{2}{17 - x} \frac{4}{Z_{FeFe}J_{FeFe}S_{Fe}^{2}} \times (GH_{m}^{2} - G'H_{m}^{2}).$$
 (5)

For example, in $R_2\text{Fe}_{14}\text{B}$, ΔT_c is about 10 K between R=Er and Tm, and the Eq.(5) holds nearly good by the values of $Z_{FeFe}=10.5$, $J_{FeFe}=36$ K [9], $G^{Er}=2.55$, $G^{Tm}=1.16$, and $H_m^{Er}=H_m^{Tm}=150$ K. Then, the coefficient 2/(17-x) of Eq. (5) has to be changed to 2/14 in $R_2\text{Fe}_{14}\text{B}$ -compound. Namely, in the case of ΔT_c of 10 K, it is thought that ΔT_c is explained by only the difference of G between Er^{3+} and Tm^{3+} , and the values of H_m^{Er} and H_m^{Tm} are the same ones. But the ΔT_c 's of $R_2\text{Fe}_{17-x}\text{Ga}_x$ (R=Er, Tm) are higher than 10 K, and increase with x. That is, the values of ΔT_c are not explained by only the difference of G, and it is thought that H_m is different between R=Er and Tm.

Fig. 7. The combination of $|A_2^0|$ and $|\mathbf{H}_m(0)|^2$. 5.4×10^4 K is the value of $\{G^{Er}(H_m^{Er})^2 - G^{Tm}(H_m^{Tm})^2\}$ estimated by the molecular field expression for T_c .

IV-4. Calculated results

The value of $\{G^{Er}(H_m^{Er})^2 - G^{Tm}(H_m^{Tm})^2\}$ in $R_2Fe_{15.5}Ga_{1.5}$ is estimated as 5.4×10^4 K by substituting the following values into Eq.(5) that $Z_{FeFe}=10-x$ [9], $J_{FeFe}=25$ K, $S_{Fe}=1$, x=1.5, and $\Delta T_c=22$ K. And the relation between the two parameters of $|A_2^0|$ and $G|H_m(0)|^2$ for R=Er and Tm are shown in Fig.7 with the estimated value. (Two curves in Fig.7 show that the relations between the two parameters of the $|A_2^0|$ and the $|H_m(0)|$ for R=Er and Tm reproduce well the observed T_{SR} in $Er_2Fe_{15.5}Ga_{1.5}$, respectively.)

From Fig.7 $G \mid \mathbf{H}_m(0) \mid^2$'s for R=Er and Tm are obtained as 8.5×10^4 K and 3.1×10^4 K, respectively; the values of $\mid \mathbf{H}_m(0) \mid$ for R=Er and R=Tm are required to be 183 K and 163 K, respectively, and the $\mid \mathbf{H}_m(0) \mid$ and A_2^0 are also obtained in the cases of x=1.0 and 2.0.

The values of A_2^0 and $|\mathbf{H}_m(0)|$ for $R_2 \operatorname{Fe}_{17-x} \operatorname{Ga}_x$ are shown in Table 1. It is noticed in Table 1 that the values of A_2^0 scarcely change in the range of $1.0 \leq x \leq 2.0$, but the values of $H_m(0)$ increase

Table 1: The A_2^0 and $H_m(0)$ in $R_2 Fe_{17-x} Ga_x$ (R=Er, Tm). $A_4^0 = -1.5$ (K a_0^{-4}).

Compounds	$A_2^0 (Ka_0^{-2})$	$H_m(0) \left(\mathbf{K} \mu_B^{-1} \right)$
$\mathrm{Er_{2}Fe_{16}Ga}$	-90	177
$\mathrm{Er_{2}Fe_{15.5}Ga_{1.5}}$	-106	183
Er ₂ Fe ₁₅ Ga ₂	-91	247
$\mathrm{Tm_{2}Fe_{16}Ga}$	-90	168
$\mathrm{Tm_{2}Fe_{15.5}Ga_{1.5}}$	-106	163
Tm ₂ Fe ₁₅ Ga ₂	-91	190

with Ga-content x in spite of decreasing number of Fe atom per molecule by Ga-substitution. It is thought that the rise of T_{SR} in R_2 Fe_{17-x}Ga_x (R=Er, Tm) is caused by the increase of 3d-4f exchange interaction.

REFERENCES

- [1] K.S.V.L. Narashimhan, W.E. Wallace, and R.D. Hutchens, IEEE Trans. Mag., 10 (1974) 729
- [2] D.Mcneely and H. Oesterreicher, J. Less-Common Met., 44 (1976) 183
- [3] H. Kato, J. Shiomi, T. Koide, T. Iriyama, M. Yamada, and Y. Nakagawa, to be published in Proc. of International Conf. on Nitromagnetics 1994 (June, 1994, Honolulu, Hawaii), as one issue of J. Alloys & Compounds
- [4] K. Ohno, T. Urakabe, T. Takei, T. Saito, K. Shinagawa, and T. Tsushima, J. Magn. Magn. Mater., (1995) (in press)
- [5] Bao-gen Shen, Fang-wei Wang, Lin-shu Kong, Lei Cao, and Wen-shan Zhan, J. Appl. Phys., 75 (1994) 6253
- [6] M. Yamada, H. Kato, H. Yamamoto, and Y. Nakagawa, Phys. Rev. B 38 (1988) 620
- [7] S. Sinnema, R.J. Radwanski, J.J.M. Franse, D.B. Mooij, and K.H.J. Buschow, J. Magn. Magn. Mater., 44 (1984) 333
- [8] M.T. Averbuch-Pouchot, R. Chevalier, J. Deportes, B. Kebe, and R. Lemaire, J. Magn. Magn. Mater., 68 (1987) 190
- [9] A. Fujita, H.Onodera, H. Yamauchi, M. Yamada, H. Yamamoto, S. Hirosawa, and M. Sagawa, J. Magn. Magn. Mater., 69 (1987) 267
- [10] N.H. Duc, T.D. Hien, D. Givord, J.J.M. Franse, and F.R. de Boer, J. Magn. Magn. Mater., 124 (1993) 305